You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
5.9 KiB
215 lines
5.9 KiB
*> \brief \b CGEQRT
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGEQRT + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqrt.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqrt.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqrt.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LDT, M, N, NB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CGEQRT computes a blocked QR factorization of a complex M-by-N matrix A
|
|
*> using the compact WY representation of Q.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NB
|
|
*> \verbatim
|
|
*> NB is INTEGER
|
|
*> The block size to be used in the blocked QR. MIN(M,N) >= NB >= 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit, the elements on and above the diagonal of the array
|
|
*> contain the min(M,N)-by-N upper trapezoidal matrix R (R is
|
|
*> upper triangular if M >= N); the elements below the diagonal
|
|
*> are the columns of V.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] T
|
|
*> \verbatim
|
|
*> T is COMPLEX array, dimension (LDT,MIN(M,N))
|
|
*> The upper triangular block reflectors stored in compact form
|
|
*> as a sequence of upper triangular blocks. See below
|
|
*> for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T. LDT >= NB.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (NB*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The matrix V stores the elementary reflectors H(i) in the i-th column
|
|
*> below the diagonal. For example, if M=5 and N=3, the matrix V is
|
|
*>
|
|
*> V = ( 1 )
|
|
*> ( v1 1 )
|
|
*> ( v1 v2 1 )
|
|
*> ( v1 v2 v3 )
|
|
*> ( v1 v2 v3 )
|
|
*>
|
|
*> where the vi's represent the vectors which define H(i), which are returned
|
|
*> in the matrix A. The 1's along the diagonal of V are not stored in A.
|
|
*>
|
|
*> Let K=MIN(M,N). The number of blocks is B = ceiling(K/NB), where each
|
|
*> block is of order NB except for the last block, which is of order
|
|
*> IB = K - (B-1)*NB. For each of the B blocks, a upper triangular block
|
|
*> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
|
|
*> for the last block) T's are stored in the NB-by-K matrix T as
|
|
*>
|
|
*> T = (T1 T2 ... TB).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LDT, M, N, NB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IB, IINFO, K
|
|
LOGICAL USE_RECURSIVE_QR
|
|
PARAMETER( USE_RECURSIVE_QR=.TRUE. )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CGEQRT2, CGEQRT3, CLARFB, XERBLA
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( NB.LT.1 .OR. ( NB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDT.LT.NB ) THEN
|
|
INFO = -7
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGEQRT', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
K = MIN( M, N )
|
|
IF( K.EQ.0 ) RETURN
|
|
*
|
|
* Blocked loop of length K
|
|
*
|
|
DO I = 1, K, NB
|
|
IB = MIN( K-I+1, NB )
|
|
*
|
|
* Compute the QR factorization of the current block A(I:M,I:I+IB-1)
|
|
*
|
|
IF( USE_RECURSIVE_QR ) THEN
|
|
CALL CGEQRT3( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
|
|
ELSE
|
|
CALL CGEQRT2( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
|
|
END IF
|
|
IF( I+IB.LE.N ) THEN
|
|
*
|
|
* Update by applying H**H to A(I:M,I+IB:N) from the left
|
|
*
|
|
CALL CLARFB( 'L', 'C', 'F', 'C', M-I+1, N-I-IB+1, IB,
|
|
$ A( I, I ), LDA, T( 1, I ), LDT,
|
|
$ A( I, I+IB ), LDA, WORK , N-I-IB+1 )
|
|
END IF
|
|
END DO
|
|
RETURN
|
|
*
|
|
* End of CGEQRT
|
|
*
|
|
END
|
|
|