You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
855 lines
28 KiB
855 lines
28 KiB
*> \brief <b> CGESVDX computes the singular value decomposition (SVD) for GE matrices</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGESVDX + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvdx.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvdx.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvdx.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU,
|
|
* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK,
|
|
* $ LWORK, RWORK, IWORK, INFO )
|
|
*
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBU, JOBVT, RANGE
|
|
* INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS
|
|
* REAL VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* REAL S( * ), RWORK( * )
|
|
* COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
|
|
* $ WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CGESVDX computes the singular value decomposition (SVD) of a complex
|
|
*> M-by-N matrix A, optionally computing the left and/or right singular
|
|
*> vectors. The SVD is written
|
|
*>
|
|
*> A = U * SIGMA * transpose(V)
|
|
*>
|
|
*> where SIGMA is an M-by-N matrix which is zero except for its
|
|
*> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
|
|
*> V is an N-by-N unitary matrix. The diagonal elements of SIGMA
|
|
*> are the singular values of A; they are real and non-negative, and
|
|
*> are returned in descending order. The first min(m,n) columns of
|
|
*> U and V are the left and right singular vectors of A.
|
|
*>
|
|
*> CGESVDX uses an eigenvalue problem for obtaining the SVD, which
|
|
*> allows for the computation of a subset of singular values and
|
|
*> vectors. See SBDSVDX for details.
|
|
*>
|
|
*> Note that the routine returns V**T, not V.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBU
|
|
*> \verbatim
|
|
*> JOBU is CHARACTER*1
|
|
*> Specifies options for computing all or part of the matrix U:
|
|
*> = 'V': the first min(m,n) columns of U (the left singular
|
|
*> vectors) or as specified by RANGE are returned in
|
|
*> the array U;
|
|
*> = 'N': no columns of U (no left singular vectors) are
|
|
*> computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBVT
|
|
*> \verbatim
|
|
*> JOBVT is CHARACTER*1
|
|
*> Specifies options for computing all or part of the matrix
|
|
*> V**T:
|
|
*> = 'V': the first min(m,n) rows of V**T (the right singular
|
|
*> vectors) or as specified by RANGE are returned in
|
|
*> the array VT;
|
|
*> = 'N': no rows of V**T (no right singular vectors) are
|
|
*> computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RANGE
|
|
*> \verbatim
|
|
*> RANGE is CHARACTER*1
|
|
*> = 'A': all singular values will be found.
|
|
*> = 'V': all singular values in the half-open interval (VL,VU]
|
|
*> will be found.
|
|
*> = 'I': the IL-th through IU-th singular values will be found.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the input matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the input matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit, the contents of A are destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VL
|
|
*> \verbatim
|
|
*> VL is REAL
|
|
*> If RANGE='V', the lower bound of the interval to
|
|
*> be searched for singular values. VU > VL.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VU
|
|
*> \verbatim
|
|
*> VU is REAL
|
|
*> If RANGE='V', the upper bound of the interval to
|
|
*> be searched for singular values. VU > VL.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IL
|
|
*> \verbatim
|
|
*> IL is INTEGER
|
|
*> If RANGE='I', the index of the
|
|
*> smallest singular value to be returned.
|
|
*> 1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IU
|
|
*> \verbatim
|
|
*> IU is INTEGER
|
|
*> If RANGE='I', the index of the
|
|
*> largest singular value to be returned.
|
|
*> 1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] NS
|
|
*> \verbatim
|
|
*> NS is INTEGER
|
|
*> The total number of singular values found,
|
|
*> 0 <= NS <= min(M,N).
|
|
*> If RANGE = 'A', NS = min(M,N); if RANGE = 'I', NS = IU-IL+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is REAL array, dimension (min(M,N))
|
|
*> The singular values of A, sorted so that S(i) >= S(i+1).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U
|
|
*> \verbatim
|
|
*> U is COMPLEX array, dimension (LDU,UCOL)
|
|
*> If JOBU = 'V', U contains columns of U (the left singular
|
|
*> vectors, stored columnwise) as specified by RANGE; if
|
|
*> JOBU = 'N', U is not referenced.
|
|
*> Note: The user must ensure that UCOL >= NS; if RANGE = 'V',
|
|
*> the exact value of NS is not known in advance and an upper
|
|
*> bound must be used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of the array U. LDU >= 1; if
|
|
*> JOBU = 'V', LDU >= M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VT
|
|
*> \verbatim
|
|
*> VT is COMPLEX array, dimension (LDVT,N)
|
|
*> If JOBVT = 'V', VT contains the rows of V**T (the right singular
|
|
*> vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N',
|
|
*> VT is not referenced.
|
|
*> Note: The user must ensure that LDVT >= NS; if RANGE = 'V',
|
|
*> the exact value of NS is not known in advance and an upper
|
|
*> bound must be used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVT
|
|
*> \verbatim
|
|
*> LDVT is INTEGER
|
|
*> The leading dimension of the array VT. LDVT >= 1; if
|
|
*> JOBVT = 'V', LDVT >= NS (see above).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK.
|
|
*> LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see
|
|
*> comments inside the code):
|
|
*> - PATH 1 (M much larger than N)
|
|
*> - PATH 1t (N much larger than M)
|
|
*> LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths.
|
|
*> For good performance, LWORK should generally be larger.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (MAX(1,LRWORK))
|
|
*> LRWORK >= MIN(M,N)*(MIN(M,N)*2+15*MIN(M,N)).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (12*MIN(M,N))
|
|
*> If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0,
|
|
*> then IWORK contains the indices of the eigenvectors that failed
|
|
*> to converge in SBDSVDX/SSTEVX.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, then i eigenvectors failed to converge
|
|
*> in SBDSVDX/SSTEVX.
|
|
*> if INFO = N*2 + 1, an internal error occurred in
|
|
*> SBDSVDX
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGEsing
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU,
|
|
$ IL, IU, NS, S, U, LDU, VT, LDVT, WORK,
|
|
$ LWORK, RWORK, IWORK, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBU, JOBVT, RANGE
|
|
INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS
|
|
REAL VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
REAL S( * ), RWORK( * )
|
|
COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
|
|
$ WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
|
|
$ CONE = ( 1.0E0, 0.0E0 ) )
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
CHARACTER JOBZ, RNGTGK
|
|
LOGICAL ALLS, INDS, LQUERY, VALS, WANTU, WANTVT
|
|
INTEGER I, ID, IE, IERR, ILQF, ILTGK, IQRF, ISCL,
|
|
$ ITAU, ITAUP, ITAUQ, ITEMP, ITEMPR, ITGKZ,
|
|
$ IUTGK, J, K, MAXWRK, MINMN, MINWRK, MNTHR
|
|
REAL ABSTOL, ANRM, BIGNUM, EPS, SMLNUM
|
|
* ..
|
|
* .. Local Arrays ..
|
|
REAL DUM( 1 )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CGEBRD, CGELQF, CGEQRF, CLASCL, CLASET,
|
|
$ CUNMBR, CUNMQR, CUNMLQ, CLACPY,
|
|
$ SBDSVDX, SLASCL, XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
REAL SLAMCH, CLANGE
|
|
EXTERNAL LSAME, ILAENV, SLAMCH, CLANGE
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments.
|
|
*
|
|
NS = 0
|
|
INFO = 0
|
|
ABSTOL = 2*SLAMCH('S')
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
MINMN = MIN( M, N )
|
|
|
|
WANTU = LSAME( JOBU, 'V' )
|
|
WANTVT = LSAME( JOBVT, 'V' )
|
|
IF( WANTU .OR. WANTVT ) THEN
|
|
JOBZ = 'V'
|
|
ELSE
|
|
JOBZ = 'N'
|
|
END IF
|
|
ALLS = LSAME( RANGE, 'A' )
|
|
VALS = LSAME( RANGE, 'V' )
|
|
INDS = LSAME( RANGE, 'I' )
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.LSAME( JOBU, 'V' ) .AND.
|
|
$ .NOT.LSAME( JOBU, 'N' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LSAME( JOBVT, 'V' ) .AND.
|
|
$ .NOT.LSAME( JOBVT, 'N' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.( ALLS .OR. VALS .OR. INDS ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( M.GT.LDA ) THEN
|
|
INFO = -7
|
|
ELSE IF( MINMN.GT.0 ) THEN
|
|
IF( VALS ) THEN
|
|
IF( VL.LT.ZERO ) THEN
|
|
INFO = -8
|
|
ELSE IF( VU.LE.VL ) THEN
|
|
INFO = -9
|
|
END IF
|
|
ELSE IF( INDS ) THEN
|
|
IF( IL.LT.1 .OR. IL.GT.MAX( 1, MINMN ) ) THEN
|
|
INFO = -10
|
|
ELSE IF( IU.LT.MIN( MINMN, IL ) .OR. IU.GT.MINMN ) THEN
|
|
INFO = -11
|
|
END IF
|
|
END IF
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( WANTU .AND. LDU.LT.M ) THEN
|
|
INFO = -15
|
|
ELSE IF( WANTVT ) THEN
|
|
IF( INDS ) THEN
|
|
IF( LDVT.LT.IU-IL+1 ) THEN
|
|
INFO = -17
|
|
END IF
|
|
ELSE IF( LDVT.LT.MINMN ) THEN
|
|
INFO = -17
|
|
END IF
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
* (Note: Comments in the code beginning "Workspace:" describe the
|
|
* minimal amount of workspace needed at that point in the code,
|
|
* as well as the preferred amount for good performance.
|
|
* NB refers to the optimal block size for the immediately
|
|
* following subroutine, as returned by ILAENV.)
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
MINWRK = 1
|
|
MAXWRK = 1
|
|
IF( MINMN.GT.0 ) THEN
|
|
IF( M.GE.N ) THEN
|
|
MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 )
|
|
IF( M.GE.MNTHR ) THEN
|
|
*
|
|
* Path 1 (M much larger than N)
|
|
*
|
|
MINWRK = N*(N+5)
|
|
MAXWRK = N + N*ILAENV(1,'CGEQRF',' ',M,N,-1,-1)
|
|
MAXWRK = MAX(MAXWRK,
|
|
$ N*N+2*N+2*N*ILAENV(1,'CGEBRD',' ',N,N,-1,-1))
|
|
IF (WANTU .OR. WANTVT) THEN
|
|
MAXWRK = MAX(MAXWRK,
|
|
$ N*N+2*N+N*ILAENV(1,'CUNMQR','LN',N,N,N,-1))
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Path 2 (M at least N, but not much larger)
|
|
*
|
|
MINWRK = 3*N + M
|
|
MAXWRK = 2*N + (M+N)*ILAENV(1,'CGEBRD',' ',M,N,-1,-1)
|
|
IF (WANTU .OR. WANTVT) THEN
|
|
MAXWRK = MAX(MAXWRK,
|
|
$ 2*N+N*ILAENV(1,'CUNMQR','LN',N,N,N,-1))
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 )
|
|
IF( N.GE.MNTHR ) THEN
|
|
*
|
|
* Path 1t (N much larger than M)
|
|
*
|
|
MINWRK = M*(M+5)
|
|
MAXWRK = M + M*ILAENV(1,'CGELQF',' ',M,N,-1,-1)
|
|
MAXWRK = MAX(MAXWRK,
|
|
$ M*M+2*M+2*M*ILAENV(1,'CGEBRD',' ',M,M,-1,-1))
|
|
IF (WANTU .OR. WANTVT) THEN
|
|
MAXWRK = MAX(MAXWRK,
|
|
$ M*M+2*M+M*ILAENV(1,'CUNMQR','LN',M,M,M,-1))
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Path 2t (N greater than M, but not much larger)
|
|
*
|
|
*
|
|
MINWRK = 3*M + N
|
|
MAXWRK = 2*M + (M+N)*ILAENV(1,'CGEBRD',' ',M,N,-1,-1)
|
|
IF (WANTU .OR. WANTVT) THEN
|
|
MAXWRK = MAX(MAXWRK,
|
|
$ 2*M+M*ILAENV(1,'CUNMQR','LN',M,M,M,-1))
|
|
END IF
|
|
END IF
|
|
END IF
|
|
END IF
|
|
MAXWRK = MAX( MAXWRK, MINWRK )
|
|
WORK( 1 ) = CMPLX( REAL( MAXWRK ), ZERO )
|
|
*
|
|
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
|
|
INFO = -19
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGESVDX', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Set singular values indices accord to RANGE='A'.
|
|
*
|
|
IF( ALLS ) THEN
|
|
RNGTGK = 'I'
|
|
ILTGK = 1
|
|
IUTGK = MIN( M, N )
|
|
ELSE IF( INDS ) THEN
|
|
RNGTGK = 'I'
|
|
ILTGK = IL
|
|
IUTGK = IU
|
|
ELSE
|
|
RNGTGK = 'V'
|
|
ILTGK = 0
|
|
IUTGK = 0
|
|
END IF
|
|
*
|
|
* Get machine constants
|
|
*
|
|
EPS = SLAMCH( 'P' )
|
|
SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
ANRM = CLANGE( 'M', M, N, A, LDA, DUM )
|
|
ISCL = 0
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
|
ISCL = 1
|
|
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
|
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
|
ISCL = 1
|
|
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
|
|
END IF
|
|
*
|
|
IF( M.GE.N ) THEN
|
|
*
|
|
* A has at least as many rows as columns. If A has sufficiently
|
|
* more rows than columns, first reduce A using the QR
|
|
* decomposition.
|
|
*
|
|
IF( M.GE.MNTHR ) THEN
|
|
*
|
|
* Path 1 (M much larger than N):
|
|
* A = Q * R = Q * ( QB * B * PB**T )
|
|
* = Q * ( QB * ( UB * S * VB**T ) * PB**T )
|
|
* U = Q * QB * UB; V**T = VB**T * PB**T
|
|
*
|
|
* Compute A=Q*R
|
|
* (Workspace: need 2*N, prefer N+N*NB)
|
|
*
|
|
ITAU = 1
|
|
ITEMP = ITAU + N
|
|
CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
*
|
|
* Copy R into WORK and bidiagonalize it:
|
|
* (Workspace: need N*N+3*N, prefer N*N+N+2*N*NB)
|
|
*
|
|
IQRF = ITEMP
|
|
ITAUQ = ITEMP + N*N
|
|
ITAUP = ITAUQ + N
|
|
ITEMP = ITAUP + N
|
|
ID = 1
|
|
IE = ID + N
|
|
ITGKZ = IE + N
|
|
CALL CLACPY( 'U', N, N, A, LDA, WORK( IQRF ), N )
|
|
CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
|
|
$ WORK( IQRF+1 ), N )
|
|
CALL CGEBRD( N, N, WORK( IQRF ), N, RWORK( ID ),
|
|
$ RWORK( IE ), WORK( ITAUQ ), WORK( ITAUP ),
|
|
$ WORK( ITEMP ), LWORK-ITEMP+1, INFO )
|
|
ITEMPR = ITGKZ + N*(N*2+1)
|
|
*
|
|
* Solve eigenvalue problem TGK*Z=Z*S.
|
|
* (Workspace: need 2*N*N+14*N)
|
|
*
|
|
CALL SBDSVDX( 'U', JOBZ, RNGTGK, N, RWORK( ID ),
|
|
$ RWORK( IE ), VL, VU, ILTGK, IUTGK, NS, S,
|
|
$ RWORK( ITGKZ ), N*2, RWORK( ITEMPR ),
|
|
$ IWORK, INFO)
|
|
*
|
|
* If needed, compute left singular vectors.
|
|
*
|
|
IF( WANTU ) THEN
|
|
K = ITGKZ
|
|
DO I = 1, NS
|
|
DO J = 1, N
|
|
U( J, I ) = CMPLX( RWORK( K ), ZERO )
|
|
K = K + 1
|
|
END DO
|
|
K = K + N
|
|
END DO
|
|
CALL CLASET( 'A', M-N, NS, CZERO, CZERO, U( N+1,1 ), LDU)
|
|
*
|
|
* Call CUNMBR to compute QB*UB.
|
|
* (Workspace in WORK( ITEMP ): need N, prefer N*NB)
|
|
*
|
|
CALL CUNMBR( 'Q', 'L', 'N', N, NS, N, WORK( IQRF ), N,
|
|
$ WORK( ITAUQ ), U, LDU, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
*
|
|
* Call CUNMQR to compute Q*(QB*UB).
|
|
* (Workspace in WORK( ITEMP ): need N, prefer N*NB)
|
|
*
|
|
CALL CUNMQR( 'L', 'N', M, NS, N, A, LDA,
|
|
$ WORK( ITAU ), U, LDU, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
END IF
|
|
*
|
|
* If needed, compute right singular vectors.
|
|
*
|
|
IF( WANTVT) THEN
|
|
K = ITGKZ + N
|
|
DO I = 1, NS
|
|
DO J = 1, N
|
|
VT( I, J ) = CMPLX( RWORK( K ), ZERO )
|
|
K = K + 1
|
|
END DO
|
|
K = K + N
|
|
END DO
|
|
*
|
|
* Call CUNMBR to compute VB**T * PB**T
|
|
* (Workspace in WORK( ITEMP ): need N, prefer N*NB)
|
|
*
|
|
CALL CUNMBR( 'P', 'R', 'C', NS, N, N, WORK( IQRF ), N,
|
|
$ WORK( ITAUP ), VT, LDVT, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Path 2 (M at least N, but not much larger)
|
|
* Reduce A to bidiagonal form without QR decomposition
|
|
* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T
|
|
* U = QB * UB; V**T = VB**T * PB**T
|
|
*
|
|
* Bidiagonalize A
|
|
* (Workspace: need 2*N+M, prefer 2*N+(M+N)*NB)
|
|
*
|
|
ITAUQ = 1
|
|
ITAUP = ITAUQ + N
|
|
ITEMP = ITAUP + N
|
|
ID = 1
|
|
IE = ID + N
|
|
ITGKZ = IE + N
|
|
CALL CGEBRD( M, N, A, LDA, RWORK( ID ), RWORK( IE ),
|
|
$ WORK( ITAUQ ), WORK( ITAUP ), WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
ITEMPR = ITGKZ + N*(N*2+1)
|
|
*
|
|
* Solve eigenvalue problem TGK*Z=Z*S.
|
|
* (Workspace: need 2*N*N+14*N)
|
|
*
|
|
CALL SBDSVDX( 'U', JOBZ, RNGTGK, N, RWORK( ID ),
|
|
$ RWORK( IE ), VL, VU, ILTGK, IUTGK, NS, S,
|
|
$ RWORK( ITGKZ ), N*2, RWORK( ITEMPR ),
|
|
$ IWORK, INFO)
|
|
*
|
|
* If needed, compute left singular vectors.
|
|
*
|
|
IF( WANTU ) THEN
|
|
K = ITGKZ
|
|
DO I = 1, NS
|
|
DO J = 1, N
|
|
U( J, I ) = CMPLX( RWORK( K ), ZERO )
|
|
K = K + 1
|
|
END DO
|
|
K = K + N
|
|
END DO
|
|
CALL CLASET( 'A', M-N, NS, CZERO, CZERO, U( N+1,1 ), LDU)
|
|
*
|
|
* Call CUNMBR to compute QB*UB.
|
|
* (Workspace in WORK( ITEMP ): need N, prefer N*NB)
|
|
*
|
|
CALL CUNMBR( 'Q', 'L', 'N', M, NS, N, A, LDA,
|
|
$ WORK( ITAUQ ), U, LDU, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, IERR )
|
|
END IF
|
|
*
|
|
* If needed, compute right singular vectors.
|
|
*
|
|
IF( WANTVT) THEN
|
|
K = ITGKZ + N
|
|
DO I = 1, NS
|
|
DO J = 1, N
|
|
VT( I, J ) = CMPLX( RWORK( K ), ZERO )
|
|
K = K + 1
|
|
END DO
|
|
K = K + N
|
|
END DO
|
|
*
|
|
* Call CUNMBR to compute VB**T * PB**T
|
|
* (Workspace in WORK( ITEMP ): need N, prefer N*NB)
|
|
*
|
|
CALL CUNMBR( 'P', 'R', 'C', NS, N, N, A, LDA,
|
|
$ WORK( ITAUP ), VT, LDVT, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, IERR )
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
*
|
|
* A has more columns than rows. If A has sufficiently more
|
|
* columns than rows, first reduce A using the LQ decomposition.
|
|
*
|
|
IF( N.GE.MNTHR ) THEN
|
|
*
|
|
* Path 1t (N much larger than M):
|
|
* A = L * Q = ( QB * B * PB**T ) * Q
|
|
* = ( QB * ( UB * S * VB**T ) * PB**T ) * Q
|
|
* U = QB * UB ; V**T = VB**T * PB**T * Q
|
|
*
|
|
* Compute A=L*Q
|
|
* (Workspace: need 2*M, prefer M+M*NB)
|
|
*
|
|
ITAU = 1
|
|
ITEMP = ITAU + M
|
|
CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
|
|
* Copy L into WORK and bidiagonalize it:
|
|
* (Workspace in WORK( ITEMP ): need M*M+3*M, prefer M*M+M+2*M*NB)
|
|
*
|
|
ILQF = ITEMP
|
|
ITAUQ = ILQF + M*M
|
|
ITAUP = ITAUQ + M
|
|
ITEMP = ITAUP + M
|
|
ID = 1
|
|
IE = ID + M
|
|
ITGKZ = IE + M
|
|
CALL CLACPY( 'L', M, M, A, LDA, WORK( ILQF ), M )
|
|
CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
|
|
$ WORK( ILQF+M ), M )
|
|
CALL CGEBRD( M, M, WORK( ILQF ), M, RWORK( ID ),
|
|
$ RWORK( IE ), WORK( ITAUQ ), WORK( ITAUP ),
|
|
$ WORK( ITEMP ), LWORK-ITEMP+1, INFO )
|
|
ITEMPR = ITGKZ + M*(M*2+1)
|
|
*
|
|
* Solve eigenvalue problem TGK*Z=Z*S.
|
|
* (Workspace: need 2*M*M+14*M)
|
|
*
|
|
CALL SBDSVDX( 'U', JOBZ, RNGTGK, M, RWORK( ID ),
|
|
$ RWORK( IE ), VL, VU, ILTGK, IUTGK, NS, S,
|
|
$ RWORK( ITGKZ ), M*2, RWORK( ITEMPR ),
|
|
$ IWORK, INFO)
|
|
*
|
|
* If needed, compute left singular vectors.
|
|
*
|
|
IF( WANTU ) THEN
|
|
K = ITGKZ
|
|
DO I = 1, NS
|
|
DO J = 1, M
|
|
U( J, I ) = CMPLX( RWORK( K ), ZERO )
|
|
K = K + 1
|
|
END DO
|
|
K = K + M
|
|
END DO
|
|
*
|
|
* Call CUNMBR to compute QB*UB.
|
|
* (Workspace in WORK( ITEMP ): need M, prefer M*NB)
|
|
*
|
|
CALL CUNMBR( 'Q', 'L', 'N', M, NS, M, WORK( ILQF ), M,
|
|
$ WORK( ITAUQ ), U, LDU, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
END IF
|
|
*
|
|
* If needed, compute right singular vectors.
|
|
*
|
|
IF( WANTVT) THEN
|
|
K = ITGKZ + M
|
|
DO I = 1, NS
|
|
DO J = 1, M
|
|
VT( I, J ) = CMPLX( RWORK( K ), ZERO )
|
|
K = K + 1
|
|
END DO
|
|
K = K + M
|
|
END DO
|
|
CALL CLASET( 'A', NS, N-M, CZERO, CZERO,
|
|
$ VT( 1,M+1 ), LDVT )
|
|
*
|
|
* Call CUNMBR to compute (VB**T)*(PB**T)
|
|
* (Workspace in WORK( ITEMP ): need M, prefer M*NB)
|
|
*
|
|
CALL CUNMBR( 'P', 'R', 'C', NS, M, M, WORK( ILQF ), M,
|
|
$ WORK( ITAUP ), VT, LDVT, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
*
|
|
* Call CUNMLQ to compute ((VB**T)*(PB**T))*Q.
|
|
* (Workspace in WORK( ITEMP ): need M, prefer M*NB)
|
|
*
|
|
CALL CUNMLQ( 'R', 'N', NS, N, M, A, LDA,
|
|
$ WORK( ITAU ), VT, LDVT, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Path 2t (N greater than M, but not much larger)
|
|
* Reduce to bidiagonal form without LQ decomposition
|
|
* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T
|
|
* U = QB * UB; V**T = VB**T * PB**T
|
|
*
|
|
* Bidiagonalize A
|
|
* (Workspace: need 2*M+N, prefer 2*M+(M+N)*NB)
|
|
*
|
|
ITAUQ = 1
|
|
ITAUP = ITAUQ + M
|
|
ITEMP = ITAUP + M
|
|
ID = 1
|
|
IE = ID + M
|
|
ITGKZ = IE + M
|
|
CALL CGEBRD( M, N, A, LDA, RWORK( ID ), RWORK( IE ),
|
|
$ WORK( ITAUQ ), WORK( ITAUP ), WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
ITEMPR = ITGKZ + M*(M*2+1)
|
|
*
|
|
* Solve eigenvalue problem TGK*Z=Z*S.
|
|
* (Workspace: need 2*M*M+14*M)
|
|
*
|
|
CALL SBDSVDX( 'L', JOBZ, RNGTGK, M, RWORK( ID ),
|
|
$ RWORK( IE ), VL, VU, ILTGK, IUTGK, NS, S,
|
|
$ RWORK( ITGKZ ), M*2, RWORK( ITEMPR ),
|
|
$ IWORK, INFO)
|
|
*
|
|
* If needed, compute left singular vectors.
|
|
*
|
|
IF( WANTU ) THEN
|
|
K = ITGKZ
|
|
DO I = 1, NS
|
|
DO J = 1, M
|
|
U( J, I ) = CMPLX( RWORK( K ), ZERO )
|
|
K = K + 1
|
|
END DO
|
|
K = K + M
|
|
END DO
|
|
*
|
|
* Call CUNMBR to compute QB*UB.
|
|
* (Workspace in WORK( ITEMP ): need M, prefer M*NB)
|
|
*
|
|
CALL CUNMBR( 'Q', 'L', 'N', M, NS, N, A, LDA,
|
|
$ WORK( ITAUQ ), U, LDU, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
END IF
|
|
*
|
|
* If needed, compute right singular vectors.
|
|
*
|
|
IF( WANTVT) THEN
|
|
K = ITGKZ + M
|
|
DO I = 1, NS
|
|
DO J = 1, M
|
|
VT( I, J ) = CMPLX( RWORK( K ), ZERO )
|
|
K = K + 1
|
|
END DO
|
|
K = K + M
|
|
END DO
|
|
CALL CLASET( 'A', NS, N-M, CZERO, CZERO,
|
|
$ VT( 1,M+1 ), LDVT )
|
|
*
|
|
* Call CUNMBR to compute VB**T * PB**T
|
|
* (Workspace in WORK( ITEMP ): need M, prefer M*NB)
|
|
*
|
|
CALL CUNMBR( 'P', 'R', 'C', NS, N, M, A, LDA,
|
|
$ WORK( ITAUP ), VT, LDVT, WORK( ITEMP ),
|
|
$ LWORK-ITEMP+1, INFO )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
* Undo scaling if necessary
|
|
*
|
|
IF( ISCL.EQ.1 ) THEN
|
|
IF( ANRM.GT.BIGNUM )
|
|
$ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1,
|
|
$ S, MINMN, INFO )
|
|
IF( ANRM.LT.SMLNUM )
|
|
$ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1,
|
|
$ S, MINMN, INFO )
|
|
END IF
|
|
*
|
|
* Return optimal workspace in WORK(1)
|
|
*
|
|
WORK( 1 ) = CMPLX( REAL( MAXWRK ), ZERO )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CGESVDX
|
|
*
|
|
END
|
|
|