You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
240 lines
6.6 KiB
240 lines
6.6 KiB
*> \brief \b CGTTRF
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGTTRF + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgttrf.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgttrf.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgttrf.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* COMPLEX D( * ), DL( * ), DU( * ), DU2( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CGTTRF computes an LU factorization of a complex tridiagonal matrix A
|
|
*> using elimination with partial pivoting and row interchanges.
|
|
*>
|
|
*> The factorization has the form
|
|
*> A = L * U
|
|
*> where L is a product of permutation and unit lower bidiagonal
|
|
*> matrices and U is upper triangular with nonzeros in only the main
|
|
*> diagonal and first two superdiagonals.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DL
|
|
*> \verbatim
|
|
*> DL is COMPLEX array, dimension (N-1)
|
|
*> On entry, DL must contain the (n-1) sub-diagonal elements of
|
|
*> A.
|
|
*>
|
|
*> On exit, DL is overwritten by the (n-1) multipliers that
|
|
*> define the matrix L from the LU factorization of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is COMPLEX array, dimension (N)
|
|
*> On entry, D must contain the diagonal elements of A.
|
|
*>
|
|
*> On exit, D is overwritten by the n diagonal elements of the
|
|
*> upper triangular matrix U from the LU factorization of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DU
|
|
*> \verbatim
|
|
*> DU is COMPLEX array, dimension (N-1)
|
|
*> On entry, DU must contain the (n-1) super-diagonal elements
|
|
*> of A.
|
|
*>
|
|
*> On exit, DU is overwritten by the (n-1) elements of the first
|
|
*> super-diagonal of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DU2
|
|
*> \verbatim
|
|
*> DU2 is COMPLEX array, dimension (N-2)
|
|
*> On exit, DU2 is overwritten by the (n-2) elements of the
|
|
*> second super-diagonal of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> The pivot indices; for 1 <= i <= n, row i of the matrix was
|
|
*> interchanged with row IPIV(i). IPIV(i) will always be either
|
|
*> i or i+1; IPIV(i) = i indicates a row interchange was not
|
|
*> required.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -k, the k-th argument had an illegal value
|
|
*> > 0: if INFO = k, U(k,k) is exactly zero. The factorization
|
|
*> has been completed, but the factor U is exactly
|
|
*> singular, and division by zero will occur if it is used
|
|
*> to solve a system of equations.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGTcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
COMPLEX D( * ), DL( * ), DU( * ), DU2( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO
|
|
PARAMETER ( ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I
|
|
COMPLEX FACT, TEMP, ZDUM
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, AIMAG, REAL
|
|
* ..
|
|
* .. Statement Functions ..
|
|
REAL CABS1
|
|
* ..
|
|
* .. Statement Function definitions ..
|
|
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
CALL XERBLA( 'CGTTRF', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Initialize IPIV(i) = i and DU2(i) = 0
|
|
*
|
|
DO 10 I = 1, N
|
|
IPIV( I ) = I
|
|
10 CONTINUE
|
|
DO 20 I = 1, N - 2
|
|
DU2( I ) = ZERO
|
|
20 CONTINUE
|
|
*
|
|
DO 30 I = 1, N - 2
|
|
IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
|
|
*
|
|
* No row interchange required, eliminate DL(I)
|
|
*
|
|
IF( CABS1( D( I ) ).NE.ZERO ) THEN
|
|
FACT = DL( I ) / D( I )
|
|
DL( I ) = FACT
|
|
D( I+1 ) = D( I+1 ) - FACT*DU( I )
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Interchange rows I and I+1, eliminate DL(I)
|
|
*
|
|
FACT = D( I ) / DL( I )
|
|
D( I ) = DL( I )
|
|
DL( I ) = FACT
|
|
TEMP = DU( I )
|
|
DU( I ) = D( I+1 )
|
|
D( I+1 ) = TEMP - FACT*D( I+1 )
|
|
DU2( I ) = DU( I+1 )
|
|
DU( I+1 ) = -FACT*DU( I+1 )
|
|
IPIV( I ) = I + 1
|
|
END IF
|
|
30 CONTINUE
|
|
IF( N.GT.1 ) THEN
|
|
I = N - 1
|
|
IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
|
|
IF( CABS1( D( I ) ).NE.ZERO ) THEN
|
|
FACT = DL( I ) / D( I )
|
|
DL( I ) = FACT
|
|
D( I+1 ) = D( I+1 ) - FACT*DU( I )
|
|
END IF
|
|
ELSE
|
|
FACT = D( I ) / DL( I )
|
|
D( I ) = DL( I )
|
|
DL( I ) = FACT
|
|
TEMP = DU( I )
|
|
DU( I ) = D( I+1 )
|
|
D( I+1 ) = TEMP - FACT*D( I+1 )
|
|
IPIV( I ) = I + 1
|
|
END IF
|
|
END IF
|
|
*
|
|
* Check for a zero on the diagonal of U.
|
|
*
|
|
DO 40 I = 1, N
|
|
IF( CABS1( D( I ) ).EQ.ZERO ) THEN
|
|
INFO = I
|
|
GO TO 50
|
|
END IF
|
|
40 CONTINUE
|
|
50 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CGTTRF
|
|
*
|
|
END
|
|
|