You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
646 lines
21 KiB
646 lines
21 KiB
*> \brief <b> CHBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
|
|
*
|
|
* @generated from zhbevx_2stage.f, fortran z -> c, Sat Nov 5 23:18:22 2016
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CHBEVX_2STAGE + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbevx_2stage.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbevx_2stage.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbevx_2stage.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CHBEVX_2STAGE( JOBZ, RANGE, UPLO, N, KD, AB, LDAB,
|
|
* Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W,
|
|
* Z, LDZ, WORK, LWORK, RWORK, IWORK,
|
|
* IFAIL, INFO )
|
|
*
|
|
* IMPLICIT NONE
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBZ, RANGE, UPLO
|
|
* INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N, LWORK
|
|
* REAL ABSTOL, VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IFAIL( * ), IWORK( * )
|
|
* REAL RWORK( * ), W( * )
|
|
* COMPLEX AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
|
|
* $ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CHBEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
|
|
*> of a complex Hermitian band matrix A using the 2stage technique for
|
|
*> the reduction to tridiagonal. Eigenvalues and eigenvectors
|
|
*> can be selected by specifying either a range of values or a range of
|
|
*> indices for the desired eigenvalues.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBZ
|
|
*> \verbatim
|
|
*> JOBZ is CHARACTER*1
|
|
*> = 'N': Compute eigenvalues only;
|
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
|
*> Not available in this release.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RANGE
|
|
*> \verbatim
|
|
*> RANGE is CHARACTER*1
|
|
*> = 'A': all eigenvalues will be found;
|
|
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
|
|
*> will be found;
|
|
*> = 'I': the IL-th through IU-th eigenvalues will be found.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KD
|
|
*> \verbatim
|
|
*> KD is INTEGER
|
|
*> The number of superdiagonals of the matrix A if UPLO = 'U',
|
|
*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX array, dimension (LDAB, N)
|
|
*> On entry, the upper or lower triangle of the Hermitian band
|
|
*> matrix A, stored in the first KD+1 rows of the array. The
|
|
*> j-th column of A is stored in the j-th column of the array AB
|
|
*> as follows:
|
|
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
|
|
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
|
|
*>
|
|
*> On exit, AB is overwritten by values generated during the
|
|
*> reduction to tridiagonal form.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KD + 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ, N)
|
|
*> If JOBZ = 'V', the N-by-N unitary matrix used in the
|
|
*> reduction to tridiagonal form.
|
|
*> If JOBZ = 'N', the array Q is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. If JOBZ = 'V', then
|
|
*> LDQ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VL
|
|
*> \verbatim
|
|
*> VL is REAL
|
|
*> If RANGE='V', the lower bound of the interval to
|
|
*> be searched for eigenvalues. VL < VU.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VU
|
|
*> \verbatim
|
|
*> VU is REAL
|
|
*> If RANGE='V', the upper bound of the interval to
|
|
*> be searched for eigenvalues. VL < VU.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IL
|
|
*> \verbatim
|
|
*> IL is INTEGER
|
|
*> If RANGE='I', the index of the
|
|
*> smallest eigenvalue to be returned.
|
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IU
|
|
*> \verbatim
|
|
*> IU is INTEGER
|
|
*> If RANGE='I', the index of the
|
|
*> largest eigenvalue to be returned.
|
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ABSTOL
|
|
*> \verbatim
|
|
*> ABSTOL is REAL
|
|
*> The absolute error tolerance for the eigenvalues.
|
|
*> An approximate eigenvalue is accepted as converged
|
|
*> when it is determined to lie in an interval [a,b]
|
|
*> of width less than or equal to
|
|
*>
|
|
*> ABSTOL + EPS * max( |a|,|b| ) ,
|
|
*>
|
|
*> where EPS is the machine precision. If ABSTOL is less than
|
|
*> or equal to zero, then EPS*|T| will be used in its place,
|
|
*> where |T| is the 1-norm of the tridiagonal matrix obtained
|
|
*> by reducing AB to tridiagonal form.
|
|
*>
|
|
*> Eigenvalues will be computed most accurately when ABSTOL is
|
|
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
|
|
*> If this routine returns with INFO>0, indicating that some
|
|
*> eigenvectors did not converge, try setting ABSTOL to
|
|
*> 2*SLAMCH('S').
|
|
*>
|
|
*> See "Computing Small Singular Values of Bidiagonal Matrices
|
|
*> with Guaranteed High Relative Accuracy," by Demmel and
|
|
*> Kahan, LAPACK Working Note #3.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The total number of eigenvalues found. 0 <= M <= N.
|
|
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is REAL array, dimension (N)
|
|
*> The first M elements contain the selected eigenvalues in
|
|
*> ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Z
|
|
*> \verbatim
|
|
*> Z is COMPLEX array, dimension (LDZ, max(1,M))
|
|
*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
|
|
*> contain the orthonormal eigenvectors of the matrix A
|
|
*> corresponding to the selected eigenvalues, with the i-th
|
|
*> column of Z holding the eigenvector associated with W(i).
|
|
*> If an eigenvector fails to converge, then that column of Z
|
|
*> contains the latest approximation to the eigenvector, and the
|
|
*> index of the eigenvector is returned in IFAIL.
|
|
*> If JOBZ = 'N', then Z is not referenced.
|
|
*> Note: the user must ensure that at least max(1,M) columns are
|
|
*> supplied in the array Z; if RANGE = 'V', the exact value of M
|
|
*> is not known in advance and an upper bound must be used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
|
*> JOBZ = 'V', LDZ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of the array WORK. LWORK >= 1, when N <= 1;
|
|
*> otherwise
|
|
*> If JOBZ = 'N' and N > 1, LWORK must be queried.
|
|
*> LWORK = MAX(1, dimension) where
|
|
*> dimension = (2KD+1)*N + KD*NTHREADS
|
|
*> where KD is the size of the band.
|
|
*> NTHREADS is the number of threads used when
|
|
*> openMP compilation is enabled, otherwise =1.
|
|
*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal sizes of the WORK, RWORK and
|
|
*> IWORK arrays, returns these values as the first entries of
|
|
*> the WORK, RWORK and IWORK arrays, and no error message
|
|
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (7*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (5*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IFAIL
|
|
*> \verbatim
|
|
*> IFAIL is INTEGER array, dimension (N)
|
|
*> If JOBZ = 'V', then if INFO = 0, the first M elements of
|
|
*> IFAIL are zero. If INFO > 0, then IFAIL contains the
|
|
*> indices of the eigenvectors that failed to converge.
|
|
*> If JOBZ = 'N', then IFAIL is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, then i eigenvectors failed to converge.
|
|
*> Their indices are stored in array IFAIL.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHEReigen
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> All details about the 2stage techniques are available in:
|
|
*>
|
|
*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
|
|
*> Parallel reduction to condensed forms for symmetric eigenvalue problems
|
|
*> using aggregated fine-grained and memory-aware kernels. In Proceedings
|
|
*> of 2011 International Conference for High Performance Computing,
|
|
*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
|
|
*> Article 8 , 11 pages.
|
|
*> http://doi.acm.org/10.1145/2063384.2063394
|
|
*>
|
|
*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
|
|
*> An improved parallel singular value algorithm and its implementation
|
|
*> for multicore hardware, In Proceedings of 2013 International Conference
|
|
*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
|
|
*> Denver, Colorado, USA, 2013.
|
|
*> Article 90, 12 pages.
|
|
*> http://doi.acm.org/10.1145/2503210.2503292
|
|
*>
|
|
*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
|
|
*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
|
|
*> calculations based on fine-grained memory aware tasks.
|
|
*> International Journal of High Performance Computing Applications.
|
|
*> Volume 28 Issue 2, Pages 196-209, May 2014.
|
|
*> http://hpc.sagepub.com/content/28/2/196
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CHBEVX_2STAGE( JOBZ, RANGE, UPLO, N, KD, AB, LDAB,
|
|
$ Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W,
|
|
$ Z, LDZ, WORK, LWORK, RWORK, IWORK,
|
|
$ IFAIL, INFO )
|
|
*
|
|
IMPLICIT NONE
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBZ, RANGE, UPLO
|
|
INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N, LWORK
|
|
REAL ABSTOL, VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IFAIL( * ), IWORK( * )
|
|
REAL RWORK( * ), W( * )
|
|
COMPLEX AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
|
|
$ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
|
COMPLEX CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
|
|
$ CONE = ( 1.0E0, 0.0E0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ,
|
|
$ LQUERY
|
|
CHARACTER ORDER
|
|
INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
|
|
$ INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
|
|
$ LLWORK, LWMIN, LHTRD, LWTRD, IB, INDHOUS,
|
|
$ J, JJ, NSPLIT
|
|
REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
|
|
$ SIGMA, SMLNUM, TMP1, VLL, VUU
|
|
COMPLEX CTMP1
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV2STAGE
|
|
REAL SLAMCH, CLANHB
|
|
EXTERNAL LSAME, SLAMCH, CLANHB, ILAENV2STAGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SCOPY, SSCAL, SSTEBZ, SSTERF, XERBLA, CCOPY,
|
|
$ CGEMV, CLACPY, CLASCL, CSTEIN, CSTEQR,
|
|
$ CSWAP, CHETRD_HB2ST
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC REAL, MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
WANTZ = LSAME( JOBZ, 'V' )
|
|
ALLEIG = LSAME( RANGE, 'A' )
|
|
VALEIG = LSAME( RANGE, 'V' )
|
|
INDEIG = LSAME( RANGE, 'I' )
|
|
LOWER = LSAME( UPLO, 'L' )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( KD.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDAB.LT.KD+1 ) THEN
|
|
INFO = -7
|
|
ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
|
|
INFO = -9
|
|
ELSE
|
|
IF( VALEIG ) THEN
|
|
IF( N.GT.0 .AND. VU.LE.VL )
|
|
$ INFO = -11
|
|
ELSE IF( INDEIG ) THEN
|
|
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
|
|
INFO = -12
|
|
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
|
|
INFO = -13
|
|
END IF
|
|
END IF
|
|
END IF
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
|
|
$ INFO = -18
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( N.LE.1 ) THEN
|
|
LWMIN = 1
|
|
WORK( 1 ) = LWMIN
|
|
ELSE
|
|
IB = ILAENV2STAGE( 2, 'CHETRD_HB2ST', JOBZ,
|
|
$ N, KD, -1, -1 )
|
|
LHTRD = ILAENV2STAGE( 3, 'CHETRD_HB2ST', JOBZ,
|
|
$ N, KD, IB, -1 )
|
|
LWTRD = ILAENV2STAGE( 4, 'CHETRD_HB2ST', JOBZ,
|
|
$ N, KD, IB, -1 )
|
|
LWMIN = LHTRD + LWTRD
|
|
WORK( 1 ) = LWMIN
|
|
ENDIF
|
|
*
|
|
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
|
|
$ INFO = -20
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CHBEVX_2STAGE', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
M = 0
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
M = 1
|
|
IF( LOWER ) THEN
|
|
CTMP1 = AB( 1, 1 )
|
|
ELSE
|
|
CTMP1 = AB( KD+1, 1 )
|
|
END IF
|
|
TMP1 = REAL( CTMP1 )
|
|
IF( VALEIG ) THEN
|
|
IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
|
|
$ M = 0
|
|
END IF
|
|
IF( M.EQ.1 ) THEN
|
|
W( 1 ) = REAL( CTMP1 )
|
|
IF( WANTZ )
|
|
$ Z( 1, 1 ) = CONE
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Get machine constants.
|
|
*
|
|
SAFMIN = SLAMCH( 'Safe minimum' )
|
|
EPS = SLAMCH( 'Precision' )
|
|
SMLNUM = SAFMIN / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
RMIN = SQRT( SMLNUM )
|
|
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
|
|
*
|
|
* Scale matrix to allowable range, if necessary.
|
|
*
|
|
ISCALE = 0
|
|
ABSTLL = ABSTOL
|
|
IF( VALEIG ) THEN
|
|
VLL = VL
|
|
VUU = VU
|
|
ELSE
|
|
VLL = ZERO
|
|
VUU = ZERO
|
|
END IF
|
|
ANRM = CLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
|
|
ISCALE = 1
|
|
SIGMA = RMIN / ANRM
|
|
ELSE IF( ANRM.GT.RMAX ) THEN
|
|
ISCALE = 1
|
|
SIGMA = RMAX / ANRM
|
|
END IF
|
|
IF( ISCALE.EQ.1 ) THEN
|
|
IF( LOWER ) THEN
|
|
CALL CLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
|
|
ELSE
|
|
CALL CLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
|
|
END IF
|
|
IF( ABSTOL.GT.0 )
|
|
$ ABSTLL = ABSTOL*SIGMA
|
|
IF( VALEIG ) THEN
|
|
VLL = VL*SIGMA
|
|
VUU = VU*SIGMA
|
|
END IF
|
|
END IF
|
|
*
|
|
* Call CHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
|
|
*
|
|
INDD = 1
|
|
INDE = INDD + N
|
|
INDRWK = INDE + N
|
|
*
|
|
INDHOUS = 1
|
|
INDWRK = INDHOUS + LHTRD
|
|
LLWORK = LWORK - INDWRK + 1
|
|
*
|
|
CALL CHETRD_HB2ST( 'N', JOBZ, UPLO, N, KD, AB, LDAB,
|
|
$ RWORK( INDD ), RWORK( INDE ), WORK( INDHOUS ),
|
|
$ LHTRD, WORK( INDWRK ), LLWORK, IINFO )
|
|
*
|
|
* If all eigenvalues are desired and ABSTOL is less than or equal
|
|
* to zero, then call SSTERF or CSTEQR. If this fails for some
|
|
* eigenvalue, then try SSTEBZ.
|
|
*
|
|
TEST = .FALSE.
|
|
IF (INDEIG) THEN
|
|
IF (IL.EQ.1 .AND. IU.EQ.N) THEN
|
|
TEST = .TRUE.
|
|
END IF
|
|
END IF
|
|
IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
|
|
CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
|
|
INDEE = INDRWK + 2*N
|
|
IF( .NOT.WANTZ ) THEN
|
|
CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
|
|
CALL SSTERF( N, W, RWORK( INDEE ), INFO )
|
|
ELSE
|
|
CALL CLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
|
|
CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
|
|
CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
|
|
$ RWORK( INDRWK ), INFO )
|
|
IF( INFO.EQ.0 ) THEN
|
|
DO 10 I = 1, N
|
|
IFAIL( I ) = 0
|
|
10 CONTINUE
|
|
END IF
|
|
END IF
|
|
IF( INFO.EQ.0 ) THEN
|
|
M = N
|
|
GO TO 30
|
|
END IF
|
|
INFO = 0
|
|
END IF
|
|
*
|
|
* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN.
|
|
*
|
|
IF( WANTZ ) THEN
|
|
ORDER = 'B'
|
|
ELSE
|
|
ORDER = 'E'
|
|
END IF
|
|
INDIBL = 1
|
|
INDISP = INDIBL + N
|
|
INDIWK = INDISP + N
|
|
CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
|
|
$ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
|
|
$ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
|
|
$ IWORK( INDIWK ), INFO )
|
|
*
|
|
IF( WANTZ ) THEN
|
|
CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
|
|
$ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
|
|
$ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
|
|
*
|
|
* Apply unitary matrix used in reduction to tridiagonal
|
|
* form to eigenvectors returned by CSTEIN.
|
|
*
|
|
DO 20 J = 1, M
|
|
CALL CCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
|
|
CALL CGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
|
|
$ Z( 1, J ), 1 )
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
* If matrix was scaled, then rescale eigenvalues appropriately.
|
|
*
|
|
30 CONTINUE
|
|
IF( ISCALE.EQ.1 ) THEN
|
|
IF( INFO.EQ.0 ) THEN
|
|
IMAX = M
|
|
ELSE
|
|
IMAX = INFO - 1
|
|
END IF
|
|
CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
|
|
END IF
|
|
*
|
|
* If eigenvalues are not in order, then sort them, along with
|
|
* eigenvectors.
|
|
*
|
|
IF( WANTZ ) THEN
|
|
DO 50 J = 1, M - 1
|
|
I = 0
|
|
TMP1 = W( J )
|
|
DO 40 JJ = J + 1, M
|
|
IF( W( JJ ).LT.TMP1 ) THEN
|
|
I = JJ
|
|
TMP1 = W( JJ )
|
|
END IF
|
|
40 CONTINUE
|
|
*
|
|
IF( I.NE.0 ) THEN
|
|
ITMP1 = IWORK( INDIBL+I-1 )
|
|
W( I ) = W( J )
|
|
IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
|
|
W( J ) = TMP1
|
|
IWORK( INDIBL+J-1 ) = ITMP1
|
|
CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
|
|
IF( INFO.NE.0 ) THEN
|
|
ITMP1 = IFAIL( I )
|
|
IFAIL( I ) = IFAIL( J )
|
|
IFAIL( J ) = ITMP1
|
|
END IF
|
|
END IF
|
|
50 CONTINUE
|
|
END IF
|
|
*
|
|
* Set WORK(1) to optimal workspace size.
|
|
*
|
|
WORK( 1 ) = LWMIN
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CHBEVX_2STAGE
|
|
*
|
|
END
|
|
|