You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
4.6 KiB
182 lines
4.6 KiB
*> \brief \b CLACRM multiplies a complex matrix by a square real matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CLACRM + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clacrm.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clacrm.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clacrm.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CLACRM( M, N, A, LDA, B, LDB, C, LDC, RWORK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDA, LDB, LDC, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL B( LDB, * ), RWORK( * )
|
|
* COMPLEX A( LDA, * ), C( LDC, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CLACRM performs a very simple matrix-matrix multiplication:
|
|
*> C := A * B,
|
|
*> where A is M by N and complex; B is N by N and real;
|
|
*> C is M by N and complex.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A and of the matrix C.
|
|
*> M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns and rows of the matrix B and
|
|
*> the number of columns of the matrix C.
|
|
*> N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA, N)
|
|
*> On entry, A contains the M by N matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >=max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB, N)
|
|
*> On entry, B contains the N by N matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >=max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] C
|
|
*> \verbatim
|
|
*> C is COMPLEX array, dimension (LDC, N)
|
|
*> On exit, C contains the M by N matrix C.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the array C. LDC >=max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (2*M*N)
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CLACRM( M, N, A, LDA, B, LDB, C, LDC, RWORK )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDA, LDB, LDC, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL B( LDB, * ), RWORK( * )
|
|
COMPLEX A( LDA, * ), C( LDC, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, L
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC AIMAG, CMPLX, REAL
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SGEMM
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
|
|
$ RETURN
|
|
*
|
|
DO 20 J = 1, N
|
|
DO 10 I = 1, M
|
|
RWORK( ( J-1 )*M+I ) = REAL( A( I, J ) )
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
*
|
|
L = M*N + 1
|
|
CALL SGEMM( 'N', 'N', M, N, N, ONE, RWORK, M, B, LDB, ZERO,
|
|
$ RWORK( L ), M )
|
|
DO 40 J = 1, N
|
|
DO 30 I = 1, M
|
|
C( I, J ) = RWORK( L+( J-1 )*M+I-1 )
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
*
|
|
DO 60 J = 1, N
|
|
DO 50 I = 1, M
|
|
RWORK( ( J-1 )*M+I ) = AIMAG( A( I, J ) )
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
CALL SGEMM( 'N', 'N', M, N, N, ONE, RWORK, M, B, LDB, ZERO,
|
|
$ RWORK( L ), M )
|
|
DO 80 J = 1, N
|
|
DO 70 I = 1, M
|
|
C( I, J ) = CMPLX( REAL( C( I, J ) ),
|
|
$ RWORK( L+( J-1 )*M+I-1 ) )
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CLACRM
|
|
*
|
|
END
|
|
|