You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
6.3 KiB
227 lines
6.3 KiB
*> \brief \b CLAQHB scales a Hermitian band matrix, using scaling factors computed by cpbequ.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CLAQHB + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqhb.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqhb.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqhb.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER EQUED, UPLO
|
|
* INTEGER KD, LDAB, N
|
|
* REAL AMAX, SCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL S( * )
|
|
* COMPLEX AB( LDAB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CLAQHB equilibrates an Hermitian band matrix A using the scaling
|
|
*> factors in the vector S.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the upper or lower triangular part of the
|
|
*> symmetric matrix A is stored.
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KD
|
|
*> \verbatim
|
|
*> KD is INTEGER
|
|
*> The number of super-diagonals of the matrix A if UPLO = 'U',
|
|
*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX array, dimension (LDAB,N)
|
|
*> On entry, the upper or lower triangle of the symmetric band
|
|
*> matrix A, stored in the first KD+1 rows of the array. The
|
|
*> j-th column of A is stored in the j-th column of the array AB
|
|
*> as follows:
|
|
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
|
|
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
|
|
*>
|
|
*> On exit, if INFO = 0, the triangular factor U or L from the
|
|
*> Cholesky factorization A = U**H *U or A = L*L**H of the band
|
|
*> matrix A, in the same storage format as A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KD+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is REAL array, dimension (N)
|
|
*> The scale factors for A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SCOND
|
|
*> \verbatim
|
|
*> SCOND is REAL
|
|
*> Ratio of the smallest S(i) to the largest S(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AMAX
|
|
*> \verbatim
|
|
*> AMAX is REAL
|
|
*> Absolute value of largest matrix entry.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] EQUED
|
|
*> \verbatim
|
|
*> EQUED is CHARACTER*1
|
|
*> Specifies whether or not equilibration was done.
|
|
*> = 'N': No equilibration.
|
|
*> = 'Y': Equilibration was done, i.e., A has been replaced by
|
|
*> diag(S) * A * diag(S).
|
|
*> \endverbatim
|
|
*
|
|
*> \par Internal Parameters:
|
|
* =========================
|
|
*>
|
|
*> \verbatim
|
|
*> THRESH is a threshold value used to decide if scaling should be done
|
|
*> based on the ratio of the scaling factors. If SCOND < THRESH,
|
|
*> scaling is done.
|
|
*>
|
|
*> LARGE and SMALL are threshold values used to decide if scaling should
|
|
*> be done based on the absolute size of the largest matrix element.
|
|
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER EQUED, UPLO
|
|
INTEGER KD, LDAB, N
|
|
REAL AMAX, SCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL S( * )
|
|
COMPLEX AB( LDAB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, THRESH
|
|
PARAMETER ( ONE = 1.0E+0, THRESH = 0.1E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J
|
|
REAL CJ, LARGE, SMALL
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
REAL SLAMCH
|
|
EXTERNAL LSAME, SLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN, REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
EQUED = 'N'
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Initialize LARGE and SMALL.
|
|
*
|
|
SMALL = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' )
|
|
LARGE = ONE / SMALL
|
|
*
|
|
IF( SCOND.GE.THRESH .AND. AMAX.GE.SMALL .AND. AMAX.LE.LARGE ) THEN
|
|
*
|
|
* No equilibration
|
|
*
|
|
EQUED = 'N'
|
|
ELSE
|
|
*
|
|
* Replace A by diag(S) * A * diag(S).
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
*
|
|
* Upper triangle of A is stored in band format.
|
|
*
|
|
DO 20 J = 1, N
|
|
CJ = S( J )
|
|
DO 10 I = MAX( 1, J-KD ), J - 1
|
|
AB( KD+1+I-J, J ) = CJ*S( I )*AB( KD+1+I-J, J )
|
|
10 CONTINUE
|
|
AB( KD+1, J ) = CJ*CJ*REAL( AB( KD+1, J ) )
|
|
20 CONTINUE
|
|
ELSE
|
|
*
|
|
* Lower triangle of A is stored.
|
|
*
|
|
DO 40 J = 1, N
|
|
CJ = S( J )
|
|
AB( 1, J ) = CJ*CJ*REAL( AB( 1, J ) )
|
|
DO 30 I = J + 1, MIN( N, J+KD )
|
|
AB( 1+I-J, J ) = CJ*S( I )*AB( 1+I-J, J )
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
END IF
|
|
EQUED = 'Y'
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CLAQHB
|
|
*
|
|
END
|
|
|