You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
7.6 KiB
269 lines
7.6 KiB
*> \brief \b CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CLARFGP + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfgp.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfgp.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfgp.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INCX, N
|
|
* COMPLEX ALPHA, TAU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX X( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CLARFGP generates a complex elementary reflector H of order n, such
|
|
*> that
|
|
*>
|
|
*> H**H * ( alpha ) = ( beta ), H**H * H = I.
|
|
*> ( x ) ( 0 )
|
|
*>
|
|
*> where alpha and beta are scalars, beta is real and non-negative, and
|
|
*> x is an (n-1)-element complex vector. H is represented in the form
|
|
*>
|
|
*> H = I - tau * ( 1 ) * ( 1 v**H ) ,
|
|
*> ( v )
|
|
*>
|
|
*> where tau is a complex scalar and v is a complex (n-1)-element
|
|
*> vector. Note that H is not hermitian.
|
|
*>
|
|
*> If the elements of x are all zero and alpha is real, then tau = 0
|
|
*> and H is taken to be the unit matrix.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the elementary reflector.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is COMPLEX
|
|
*> On entry, the value alpha.
|
|
*> On exit, it is overwritten with the value beta.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X
|
|
*> \verbatim
|
|
*> X is COMPLEX array, dimension
|
|
*> (1+(N-2)*abs(INCX))
|
|
*> On entry, the vector x.
|
|
*> On exit, it is overwritten with the vector v.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCX
|
|
*> \verbatim
|
|
*> INCX is INTEGER
|
|
*> The increment between elements of X. INCX > 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX
|
|
*> The value tau.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INCX, N
|
|
COMPLEX ALPHA, TAU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX X( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL TWO, ONE, ZERO
|
|
PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER J, KNT
|
|
REAL ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
|
|
COMPLEX SAVEALPHA
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SCNRM2, SLAMCH, SLAPY3, SLAPY2
|
|
COMPLEX CLADIV
|
|
EXTERNAL SCNRM2, SLAMCH, SLAPY3, SLAPY2, CLADIV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CSCAL, CSSCAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
TAU = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
XNORM = SCNRM2( N-1, X, INCX )
|
|
ALPHR = REAL( ALPHA )
|
|
ALPHI = AIMAG( ALPHA )
|
|
*
|
|
IF( XNORM.EQ.ZERO ) THEN
|
|
*
|
|
* H = [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
|
|
*
|
|
IF( ALPHI.EQ.ZERO ) THEN
|
|
IF( ALPHR.GE.ZERO ) THEN
|
|
* When TAU.eq.ZERO, the vector is special-cased to be
|
|
* all zeros in the application routines. We do not need
|
|
* to clear it.
|
|
TAU = ZERO
|
|
ELSE
|
|
* However, the application routines rely on explicit
|
|
* zero checks when TAU.ne.ZERO, and we must clear X.
|
|
TAU = TWO
|
|
DO J = 1, N-1
|
|
X( 1 + (J-1)*INCX ) = ZERO
|
|
END DO
|
|
ALPHA = -ALPHA
|
|
END IF
|
|
ELSE
|
|
* Only "reflecting" the diagonal entry to be real and non-negative.
|
|
XNORM = SLAPY2( ALPHR, ALPHI )
|
|
TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
|
|
DO J = 1, N-1
|
|
X( 1 + (J-1)*INCX ) = ZERO
|
|
END DO
|
|
ALPHA = XNORM
|
|
END IF
|
|
ELSE
|
|
*
|
|
* general case
|
|
*
|
|
BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
|
|
SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'E' )
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
KNT = 0
|
|
IF( ABS( BETA ).LT.SMLNUM ) THEN
|
|
*
|
|
* XNORM, BETA may be inaccurate; scale X and recompute them
|
|
*
|
|
10 CONTINUE
|
|
KNT = KNT + 1
|
|
CALL CSSCAL( N-1, BIGNUM, X, INCX )
|
|
BETA = BETA*BIGNUM
|
|
ALPHI = ALPHI*BIGNUM
|
|
ALPHR = ALPHR*BIGNUM
|
|
IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) )
|
|
$ GO TO 10
|
|
*
|
|
* New BETA is at most 1, at least SMLNUM
|
|
*
|
|
XNORM = SCNRM2( N-1, X, INCX )
|
|
ALPHA = CMPLX( ALPHR, ALPHI )
|
|
BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
|
|
END IF
|
|
SAVEALPHA = ALPHA
|
|
ALPHA = ALPHA + BETA
|
|
IF( BETA.LT.ZERO ) THEN
|
|
BETA = -BETA
|
|
TAU = -ALPHA / BETA
|
|
ELSE
|
|
ALPHR = ALPHI * (ALPHI/REAL( ALPHA ))
|
|
ALPHR = ALPHR + XNORM * (XNORM/REAL( ALPHA ))
|
|
TAU = CMPLX( ALPHR/BETA, -ALPHI/BETA )
|
|
ALPHA = CMPLX( -ALPHR, ALPHI )
|
|
END IF
|
|
ALPHA = CLADIV( CMPLX( ONE ), ALPHA )
|
|
*
|
|
IF ( ABS(TAU).LE.SMLNUM ) THEN
|
|
*
|
|
* In the case where the computed TAU ends up being a denormalized number,
|
|
* it loses relative accuracy. This is a BIG problem. Solution: flush TAU
|
|
* to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
|
|
*
|
|
* (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
|
|
* (Thanks Pat. Thanks MathWorks.)
|
|
*
|
|
ALPHR = REAL( SAVEALPHA )
|
|
ALPHI = AIMAG( SAVEALPHA )
|
|
IF( ALPHI.EQ.ZERO ) THEN
|
|
IF( ALPHR.GE.ZERO ) THEN
|
|
TAU = ZERO
|
|
ELSE
|
|
TAU = TWO
|
|
DO J = 1, N-1
|
|
X( 1 + (J-1)*INCX ) = ZERO
|
|
END DO
|
|
BETA = REAL( -SAVEALPHA )
|
|
END IF
|
|
ELSE
|
|
XNORM = SLAPY2( ALPHR, ALPHI )
|
|
TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
|
|
DO J = 1, N-1
|
|
X( 1 + (J-1)*INCX ) = ZERO
|
|
END DO
|
|
BETA = XNORM
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* This is the general case.
|
|
*
|
|
CALL CSCAL( N-1, ALPHA, X, INCX )
|
|
*
|
|
END IF
|
|
*
|
|
* If BETA is subnormal, it may lose relative accuracy
|
|
*
|
|
DO 20 J = 1, KNT
|
|
BETA = BETA*SMLNUM
|
|
20 CONTINUE
|
|
ALPHA = BETA
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CLARFGP
|
|
*
|
|
END
|
|
|