You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
6.3 KiB
237 lines
6.3 KiB
*> \brief \b CPPEQU
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CPPEQU + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cppequ.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cppequ.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cppequ.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, N
|
|
* REAL AMAX, SCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL S( * )
|
|
* COMPLEX AP( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CPPEQU computes row and column scalings intended to equilibrate a
|
|
*> Hermitian positive definite matrix A in packed storage and reduce
|
|
*> its condition number (with respect to the two-norm). S contains the
|
|
*> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
|
|
*> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
|
|
*> This choice of S puts the condition number of B within a factor N of
|
|
*> the smallest possible condition number over all possible diagonal
|
|
*> scalings.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AP
|
|
*> \verbatim
|
|
*> AP is COMPLEX array, dimension (N*(N+1)/2)
|
|
*> The upper or lower triangle of the Hermitian matrix A, packed
|
|
*> columnwise in a linear array. The j-th column of A is stored
|
|
*> in the array AP as follows:
|
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
|
|
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is REAL array, dimension (N)
|
|
*> If INFO = 0, S contains the scale factors for A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCOND
|
|
*> \verbatim
|
|
*> SCOND is REAL
|
|
*> If INFO = 0, S contains the ratio of the smallest S(i) to
|
|
*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
|
|
*> large nor too small, it is not worth scaling by S.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AMAX
|
|
*> \verbatim
|
|
*> AMAX is REAL
|
|
*> Absolute value of largest matrix element. If AMAX is very
|
|
*> close to overflow or very close to underflow, the matrix
|
|
*> should be scaled.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, the i-th diagonal element is nonpositive.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, N
|
|
REAL AMAX, SCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL S( * )
|
|
COMPLEX AP( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER I, JJ
|
|
REAL SMIN
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN, REAL, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CPPEQU', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
SCOND = ONE
|
|
AMAX = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Initialize SMIN and AMAX.
|
|
*
|
|
S( 1 ) = REAL( AP( 1 ) )
|
|
SMIN = S( 1 )
|
|
AMAX = S( 1 )
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* UPLO = 'U': Upper triangle of A is stored.
|
|
* Find the minimum and maximum diagonal elements.
|
|
*
|
|
JJ = 1
|
|
DO 10 I = 2, N
|
|
JJ = JJ + I
|
|
S( I ) = REAL( AP( JJ ) )
|
|
SMIN = MIN( SMIN, S( I ) )
|
|
AMAX = MAX( AMAX, S( I ) )
|
|
10 CONTINUE
|
|
*
|
|
ELSE
|
|
*
|
|
* UPLO = 'L': Lower triangle of A is stored.
|
|
* Find the minimum and maximum diagonal elements.
|
|
*
|
|
JJ = 1
|
|
DO 20 I = 2, N
|
|
JJ = JJ + N - I + 2
|
|
S( I ) = REAL( AP( JJ ) )
|
|
SMIN = MIN( SMIN, S( I ) )
|
|
AMAX = MAX( AMAX, S( I ) )
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
IF( SMIN.LE.ZERO ) THEN
|
|
*
|
|
* Find the first non-positive diagonal element and return.
|
|
*
|
|
DO 30 I = 1, N
|
|
IF( S( I ).LE.ZERO ) THEN
|
|
INFO = I
|
|
RETURN
|
|
END IF
|
|
30 CONTINUE
|
|
ELSE
|
|
*
|
|
* Set the scale factors to the reciprocals
|
|
* of the diagonal elements.
|
|
*
|
|
DO 40 I = 1, N
|
|
S( I ) = ONE / SQRT( S( I ) )
|
|
40 CONTINUE
|
|
*
|
|
* Compute SCOND = min(S(I)) / max(S(I))
|
|
*
|
|
SCOND = SQRT( SMIN ) / SQRT( AMAX )
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of CPPEQU
|
|
*
|
|
END
|
|
|