You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
788 lines
27 KiB
788 lines
27 KiB
*> \brief \b CSTEMR
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CSTEMR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstemr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstemr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstemr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
|
|
* M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
|
|
* IWORK, LIWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBZ, RANGE
|
|
* LOGICAL TRYRAC
|
|
* INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
|
|
* REAL VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER ISUPPZ( * ), IWORK( * )
|
|
* REAL D( * ), E( * ), W( * ), WORK( * )
|
|
* COMPLEX Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CSTEMR computes selected eigenvalues and, optionally, eigenvectors
|
|
*> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
|
|
*> a well defined set of pairwise different real eigenvalues, the corresponding
|
|
*> real eigenvectors are pairwise orthogonal.
|
|
*>
|
|
*> The spectrum may be computed either completely or partially by specifying
|
|
*> either an interval (VL,VU] or a range of indices IL:IU for the desired
|
|
*> eigenvalues.
|
|
*>
|
|
*> Depending on the number of desired eigenvalues, these are computed either
|
|
*> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
|
|
*> computed by the use of various suitable L D L^T factorizations near clusters
|
|
*> of close eigenvalues (referred to as RRRs, Relatively Robust
|
|
*> Representations). An informal sketch of the algorithm follows.
|
|
*>
|
|
*> For each unreduced block (submatrix) of T,
|
|
*> (a) Compute T - sigma I = L D L^T, so that L and D
|
|
*> define all the wanted eigenvalues to high relative accuracy.
|
|
*> This means that small relative changes in the entries of D and L
|
|
*> cause only small relative changes in the eigenvalues and
|
|
*> eigenvectors. The standard (unfactored) representation of the
|
|
*> tridiagonal matrix T does not have this property in general.
|
|
*> (b) Compute the eigenvalues to suitable accuracy.
|
|
*> If the eigenvectors are desired, the algorithm attains full
|
|
*> accuracy of the computed eigenvalues only right before
|
|
*> the corresponding vectors have to be computed, see steps c) and d).
|
|
*> (c) For each cluster of close eigenvalues, select a new
|
|
*> shift close to the cluster, find a new factorization, and refine
|
|
*> the shifted eigenvalues to suitable accuracy.
|
|
*> (d) For each eigenvalue with a large enough relative separation compute
|
|
*> the corresponding eigenvector by forming a rank revealing twisted
|
|
*> factorization. Go back to (c) for any clusters that remain.
|
|
*>
|
|
*> For more details, see:
|
|
*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
|
|
*> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
|
|
*> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
|
|
*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
|
|
*> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
|
|
*> 2004. Also LAPACK Working Note 154.
|
|
*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
|
|
*> tridiagonal eigenvalue/eigenvector problem",
|
|
*> Computer Science Division Technical Report No. UCB/CSD-97-971,
|
|
*> UC Berkeley, May 1997.
|
|
*>
|
|
*> Further Details
|
|
*> 1.CSTEMR works only on machines which follow IEEE-754
|
|
*> floating-point standard in their handling of infinities and NaNs.
|
|
*> This permits the use of efficient inner loops avoiding a check for
|
|
*> zero divisors.
|
|
*>
|
|
*> 2. LAPACK routines can be used to reduce a complex Hermitean matrix to
|
|
*> real symmetric tridiagonal form.
|
|
*>
|
|
*> (Any complex Hermitean tridiagonal matrix has real values on its diagonal
|
|
*> and potentially complex numbers on its off-diagonals. By applying a
|
|
*> similarity transform with an appropriate diagonal matrix
|
|
*> diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
|
|
*> matrix can be transformed into a real symmetric matrix and complex
|
|
*> arithmetic can be entirely avoided.)
|
|
*>
|
|
*> While the eigenvectors of the real symmetric tridiagonal matrix are real,
|
|
*> the eigenvectors of original complex Hermitean matrix have complex entries
|
|
*> in general.
|
|
*> Since LAPACK drivers overwrite the matrix data with the eigenvectors,
|
|
*> CSTEMR accepts complex workspace to facilitate interoperability
|
|
*> with CUNMTR or CUPMTR.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBZ
|
|
*> \verbatim
|
|
*> JOBZ is CHARACTER*1
|
|
*> = 'N': Compute eigenvalues only;
|
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RANGE
|
|
*> \verbatim
|
|
*> RANGE is CHARACTER*1
|
|
*> = 'A': all eigenvalues will be found.
|
|
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
|
|
*> will be found.
|
|
*> = 'I': the IL-th through IU-th eigenvalues will be found.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> On entry, the N diagonal elements of the tridiagonal matrix
|
|
*> T. On exit, D is overwritten.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (N)
|
|
*> On entry, the (N-1) subdiagonal elements of the tridiagonal
|
|
*> matrix T in elements 1 to N-1 of E. E(N) need not be set on
|
|
*> input, but is used internally as workspace.
|
|
*> On exit, E is overwritten.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VL
|
|
*> \verbatim
|
|
*> VL is REAL
|
|
*>
|
|
*> If RANGE='V', the lower bound of the interval to
|
|
*> be searched for eigenvalues. VL < VU.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VU
|
|
*> \verbatim
|
|
*> VU is REAL
|
|
*>
|
|
*> If RANGE='V', the upper bound of the interval to
|
|
*> be searched for eigenvalues. VL < VU.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IL
|
|
*> \verbatim
|
|
*> IL is INTEGER
|
|
*>
|
|
*> If RANGE='I', the index of the
|
|
*> smallest eigenvalue to be returned.
|
|
*> 1 <= IL <= IU <= N, if N > 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IU
|
|
*> \verbatim
|
|
*> IU is INTEGER
|
|
*>
|
|
*> If RANGE='I', the index of the
|
|
*> largest eigenvalue to be returned.
|
|
*> 1 <= IL <= IU <= N, if N > 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The total number of eigenvalues found. 0 <= M <= N.
|
|
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is REAL array, dimension (N)
|
|
*> The first M elements contain the selected eigenvalues in
|
|
*> ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Z
|
|
*> \verbatim
|
|
*> Z is COMPLEX array, dimension (LDZ, max(1,M) )
|
|
*> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
|
|
*> contain the orthonormal eigenvectors of the matrix T
|
|
*> corresponding to the selected eigenvalues, with the i-th
|
|
*> column of Z holding the eigenvector associated with W(i).
|
|
*> If JOBZ = 'N', then Z is not referenced.
|
|
*> Note: the user must ensure that at least max(1,M) columns are
|
|
*> supplied in the array Z; if RANGE = 'V', the exact value of M
|
|
*> is not known in advance and can be computed with a workspace
|
|
*> query by setting NZC = -1, see below.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
|
*> JOBZ = 'V', then LDZ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NZC
|
|
*> \verbatim
|
|
*> NZC is INTEGER
|
|
*> The number of eigenvectors to be held in the array Z.
|
|
*> If RANGE = 'A', then NZC >= max(1,N).
|
|
*> If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
|
|
*> If RANGE = 'I', then NZC >= IU-IL+1.
|
|
*> If NZC = -1, then a workspace query is assumed; the
|
|
*> routine calculates the number of columns of the array Z that
|
|
*> are needed to hold the eigenvectors.
|
|
*> This value is returned as the first entry of the Z array, and
|
|
*> no error message related to NZC is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ISUPPZ
|
|
*> \verbatim
|
|
*> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
|
|
*> The support of the eigenvectors in Z, i.e., the indices
|
|
*> indicating the nonzero elements in Z. The i-th computed eigenvector
|
|
*> is nonzero only in elements ISUPPZ( 2*i-1 ) through
|
|
*> ISUPPZ( 2*i ). This is relevant in the case when the matrix
|
|
*> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] TRYRAC
|
|
*> \verbatim
|
|
*> TRYRAC is LOGICAL
|
|
*> If TRYRAC = .TRUE., indicates that the code should check whether
|
|
*> the tridiagonal matrix defines its eigenvalues to high relative
|
|
*> accuracy. If so, the code uses relative-accuracy preserving
|
|
*> algorithms that might be (a bit) slower depending on the matrix.
|
|
*> If the matrix does not define its eigenvalues to high relative
|
|
*> accuracy, the code can uses possibly faster algorithms.
|
|
*> If TRYRAC = .FALSE., the code is not required to guarantee
|
|
*> relatively accurate eigenvalues and can use the fastest possible
|
|
*> techniques.
|
|
*> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
|
|
*> does not define its eigenvalues to high relative accuracy.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (LWORK)
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal
|
|
*> (and minimal) LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,18*N)
|
|
*> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (LIWORK)
|
|
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LIWORK
|
|
*> \verbatim
|
|
*> LIWORK is INTEGER
|
|
*> The dimension of the array IWORK. LIWORK >= max(1,10*N)
|
|
*> if the eigenvectors are desired, and LIWORK >= max(1,8*N)
|
|
*> if only the eigenvalues are to be computed.
|
|
*> If LIWORK = -1, then a workspace query is assumed; the
|
|
*> routine only calculates the optimal size of the IWORK array,
|
|
*> returns this value as the first entry of the IWORK array, and
|
|
*> no error message related to LIWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> On exit, INFO
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = 1X, internal error in SLARRE,
|
|
*> if INFO = 2X, internal error in CLARRV.
|
|
*> Here, the digit X = ABS( IINFO ) < 10, where IINFO is
|
|
*> the nonzero error code returned by SLARRE or
|
|
*> CLARRV, respectively.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Beresford Parlett, University of California, Berkeley, USA \n
|
|
*> Jim Demmel, University of California, Berkeley, USA \n
|
|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
|
|
*> Osni Marques, LBNL/NERSC, USA \n
|
|
*> Christof Voemel, University of California, Berkeley, USA
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
|
|
$ M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
|
|
$ IWORK, LIWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBZ, RANGE
|
|
LOGICAL TRYRAC
|
|
INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
|
|
REAL VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER ISUPPZ( * ), IWORK( * )
|
|
REAL D( * ), E( * ), W( * ), WORK( * )
|
|
COMPLEX Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE, FOUR, MINRGP
|
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0,
|
|
$ FOUR = 4.0E0,
|
|
$ MINRGP = 3.0E-3 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
|
|
INTEGER I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
|
|
$ IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
|
|
$ INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
|
|
$ ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
|
|
$ NZCMIN, OFFSET, WBEGIN, WEND
|
|
REAL BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
|
|
$ RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
|
|
$ THRESH, TMP, TNRM, WL, WU
|
|
* ..
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
REAL SLAMCH, SLANST
|
|
EXTERNAL LSAME, SLAMCH, SLANST
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CLARRV, CSWAP, SCOPY, SLAE2, SLAEV2, SLARRC,
|
|
$ SLARRE, SLARRJ, SLARRR, SLASRT, SSCAL, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN, SQRT
|
|
|
|
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
WANTZ = LSAME( JOBZ, 'V' )
|
|
ALLEIG = LSAME( RANGE, 'A' )
|
|
VALEIG = LSAME( RANGE, 'V' )
|
|
INDEIG = LSAME( RANGE, 'I' )
|
|
*
|
|
LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
|
|
ZQUERY = ( NZC.EQ.-1 )
|
|
|
|
* SSTEMR needs WORK of size 6*N, IWORK of size 3*N.
|
|
* In addition, SLARRE needs WORK of size 6*N, IWORK of size 5*N.
|
|
* Furthermore, CLARRV needs WORK of size 12*N, IWORK of size 7*N.
|
|
IF( WANTZ ) THEN
|
|
LWMIN = 18*N
|
|
LIWMIN = 10*N
|
|
ELSE
|
|
* need less workspace if only the eigenvalues are wanted
|
|
LWMIN = 12*N
|
|
LIWMIN = 8*N
|
|
ENDIF
|
|
|
|
WL = ZERO
|
|
WU = ZERO
|
|
IIL = 0
|
|
IIU = 0
|
|
NSPLIT = 0
|
|
|
|
IF( VALEIG ) THEN
|
|
* We do not reference VL, VU in the cases RANGE = 'I','A'
|
|
* The interval (WL, WU] contains all the wanted eigenvalues.
|
|
* It is either given by the user or computed in SLARRE.
|
|
WL = VL
|
|
WU = VU
|
|
ELSEIF( INDEIG ) THEN
|
|
* We do not reference IL, IU in the cases RANGE = 'V','A'
|
|
IIL = IL
|
|
IIU = IU
|
|
ENDIF
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
|
|
INFO = -7
|
|
ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
|
|
INFO = -13
|
|
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -17
|
|
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -19
|
|
END IF
|
|
*
|
|
* Get machine constants.
|
|
*
|
|
SAFMIN = SLAMCH( 'Safe minimum' )
|
|
EPS = SLAMCH( 'Precision' )
|
|
SMLNUM = SAFMIN / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
RMIN = SQRT( SMLNUM )
|
|
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
WORK( 1 ) = LWMIN
|
|
IWORK( 1 ) = LIWMIN
|
|
*
|
|
IF( WANTZ .AND. ALLEIG ) THEN
|
|
NZCMIN = N
|
|
ELSE IF( WANTZ .AND. VALEIG ) THEN
|
|
CALL SLARRC( 'T', N, VL, VU, D, E, SAFMIN,
|
|
$ NZCMIN, ITMP, ITMP2, INFO )
|
|
ELSE IF( WANTZ .AND. INDEIG ) THEN
|
|
NZCMIN = IIU-IIL+1
|
|
ELSE
|
|
* WANTZ .EQ. FALSE.
|
|
NZCMIN = 0
|
|
ENDIF
|
|
IF( ZQUERY .AND. INFO.EQ.0 ) THEN
|
|
Z( 1,1 ) = NZCMIN
|
|
ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
|
|
INFO = -14
|
|
END IF
|
|
END IF
|
|
|
|
IF( INFO.NE.0 ) THEN
|
|
*
|
|
CALL XERBLA( 'CSTEMR', -INFO )
|
|
*
|
|
RETURN
|
|
ELSE IF( LQUERY .OR. ZQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Handle N = 0, 1, and 2 cases immediately
|
|
*
|
|
M = 0
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
IF( ALLEIG .OR. INDEIG ) THEN
|
|
M = 1
|
|
W( 1 ) = D( 1 )
|
|
ELSE
|
|
IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
|
|
M = 1
|
|
W( 1 ) = D( 1 )
|
|
END IF
|
|
END IF
|
|
IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
|
|
Z( 1, 1 ) = ONE
|
|
ISUPPZ(1) = 1
|
|
ISUPPZ(2) = 1
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( N.EQ.2 ) THEN
|
|
IF( .NOT.WANTZ ) THEN
|
|
CALL SLAE2( D(1), E(1), D(2), R1, R2 )
|
|
ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
|
|
CALL SLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
|
|
END IF
|
|
IF( ALLEIG.OR.
|
|
$ (VALEIG.AND.(R2.GT.WL).AND.
|
|
$ (R2.LE.WU)).OR.
|
|
$ (INDEIG.AND.(IIL.EQ.1)) ) THEN
|
|
M = M+1
|
|
W( M ) = R2
|
|
IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
|
|
Z( 1, M ) = -SN
|
|
Z( 2, M ) = CS
|
|
* Note: At most one of SN and CS can be zero.
|
|
IF (SN.NE.ZERO) THEN
|
|
IF (CS.NE.ZERO) THEN
|
|
ISUPPZ(2*M-1) = 1
|
|
ISUPPZ(2*M) = 2
|
|
ELSE
|
|
ISUPPZ(2*M-1) = 1
|
|
ISUPPZ(2*M) = 1
|
|
END IF
|
|
ELSE
|
|
ISUPPZ(2*M-1) = 2
|
|
ISUPPZ(2*M) = 2
|
|
END IF
|
|
ENDIF
|
|
ENDIF
|
|
IF( ALLEIG.OR.
|
|
$ (VALEIG.AND.(R1.GT.WL).AND.
|
|
$ (R1.LE.WU)).OR.
|
|
$ (INDEIG.AND.(IIU.EQ.2)) ) THEN
|
|
M = M+1
|
|
W( M ) = R1
|
|
IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
|
|
Z( 1, M ) = CS
|
|
Z( 2, M ) = SN
|
|
* Note: At most one of SN and CS can be zero.
|
|
IF (SN.NE.ZERO) THEN
|
|
IF (CS.NE.ZERO) THEN
|
|
ISUPPZ(2*M-1) = 1
|
|
ISUPPZ(2*M) = 2
|
|
ELSE
|
|
ISUPPZ(2*M-1) = 1
|
|
ISUPPZ(2*M) = 1
|
|
END IF
|
|
ELSE
|
|
ISUPPZ(2*M-1) = 2
|
|
ISUPPZ(2*M) = 2
|
|
END IF
|
|
ENDIF
|
|
ENDIF
|
|
ELSE
|
|
|
|
* Continue with general N
|
|
|
|
INDGRS = 1
|
|
INDERR = 2*N + 1
|
|
INDGP = 3*N + 1
|
|
INDD = 4*N + 1
|
|
INDE2 = 5*N + 1
|
|
INDWRK = 6*N + 1
|
|
*
|
|
IINSPL = 1
|
|
IINDBL = N + 1
|
|
IINDW = 2*N + 1
|
|
IINDWK = 3*N + 1
|
|
*
|
|
* Scale matrix to allowable range, if necessary.
|
|
* The allowable range is related to the PIVMIN parameter; see the
|
|
* comments in SLARRD. The preference for scaling small values
|
|
* up is heuristic; we expect users' matrices not to be close to the
|
|
* RMAX threshold.
|
|
*
|
|
SCALE = ONE
|
|
TNRM = SLANST( 'M', N, D, E )
|
|
IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
|
|
SCALE = RMIN / TNRM
|
|
ELSE IF( TNRM.GT.RMAX ) THEN
|
|
SCALE = RMAX / TNRM
|
|
END IF
|
|
IF( SCALE.NE.ONE ) THEN
|
|
CALL SSCAL( N, SCALE, D, 1 )
|
|
CALL SSCAL( N-1, SCALE, E, 1 )
|
|
TNRM = TNRM*SCALE
|
|
IF( VALEIG ) THEN
|
|
* If eigenvalues in interval have to be found,
|
|
* scale (WL, WU] accordingly
|
|
WL = WL*SCALE
|
|
WU = WU*SCALE
|
|
ENDIF
|
|
END IF
|
|
*
|
|
* Compute the desired eigenvalues of the tridiagonal after splitting
|
|
* into smaller subblocks if the corresponding off-diagonal elements
|
|
* are small
|
|
* THRESH is the splitting parameter for SLARRE
|
|
* A negative THRESH forces the old splitting criterion based on the
|
|
* size of the off-diagonal. A positive THRESH switches to splitting
|
|
* which preserves relative accuracy.
|
|
*
|
|
IF( TRYRAC ) THEN
|
|
* Test whether the matrix warrants the more expensive relative approach.
|
|
CALL SLARRR( N, D, E, IINFO )
|
|
ELSE
|
|
* The user does not care about relative accurately eigenvalues
|
|
IINFO = -1
|
|
ENDIF
|
|
* Set the splitting criterion
|
|
IF (IINFO.EQ.0) THEN
|
|
THRESH = EPS
|
|
ELSE
|
|
THRESH = -EPS
|
|
* relative accuracy is desired but T does not guarantee it
|
|
TRYRAC = .FALSE.
|
|
ENDIF
|
|
*
|
|
IF( TRYRAC ) THEN
|
|
* Copy original diagonal, needed to guarantee relative accuracy
|
|
CALL SCOPY(N,D,1,WORK(INDD),1)
|
|
ENDIF
|
|
* Store the squares of the offdiagonal values of T
|
|
DO 5 J = 1, N-1
|
|
WORK( INDE2+J-1 ) = E(J)**2
|
|
5 CONTINUE
|
|
|
|
* Set the tolerance parameters for bisection
|
|
IF( .NOT.WANTZ ) THEN
|
|
* SLARRE computes the eigenvalues to full precision.
|
|
RTOL1 = FOUR * EPS
|
|
RTOL2 = FOUR * EPS
|
|
ELSE
|
|
* SLARRE computes the eigenvalues to less than full precision.
|
|
* CLARRV will refine the eigenvalue approximations, and we only
|
|
* need less accurate initial bisection in SLARRE.
|
|
* Note: these settings do only affect the subset case and SLARRE
|
|
RTOL1 = MAX( SQRT(EPS)*5.0E-2, FOUR * EPS )
|
|
RTOL2 = MAX( SQRT(EPS)*5.0E-3, FOUR * EPS )
|
|
ENDIF
|
|
CALL SLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
|
|
$ WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
|
|
$ IWORK( IINSPL ), M, W, WORK( INDERR ),
|
|
$ WORK( INDGP ), IWORK( IINDBL ),
|
|
$ IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
|
|
$ WORK( INDWRK ), IWORK( IINDWK ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
INFO = 10 + ABS( IINFO )
|
|
RETURN
|
|
END IF
|
|
* Note that if RANGE .NE. 'V', SLARRE computes bounds on the desired
|
|
* part of the spectrum. All desired eigenvalues are contained in
|
|
* (WL,WU]
|
|
|
|
|
|
IF( WANTZ ) THEN
|
|
*
|
|
* Compute the desired eigenvectors corresponding to the computed
|
|
* eigenvalues
|
|
*
|
|
CALL CLARRV( N, WL, WU, D, E,
|
|
$ PIVMIN, IWORK( IINSPL ), M,
|
|
$ 1, M, MINRGP, RTOL1, RTOL2,
|
|
$ W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
|
|
$ IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
|
|
$ ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
INFO = 20 + ABS( IINFO )
|
|
RETURN
|
|
END IF
|
|
ELSE
|
|
* SLARRE computes eigenvalues of the (shifted) root representation
|
|
* CLARRV returns the eigenvalues of the unshifted matrix.
|
|
* However, if the eigenvectors are not desired by the user, we need
|
|
* to apply the corresponding shifts from SLARRE to obtain the
|
|
* eigenvalues of the original matrix.
|
|
DO 20 J = 1, M
|
|
ITMP = IWORK( IINDBL+J-1 )
|
|
W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
|
|
IF ( TRYRAC ) THEN
|
|
* Refine computed eigenvalues so that they are relatively accurate
|
|
* with respect to the original matrix T.
|
|
IBEGIN = 1
|
|
WBEGIN = 1
|
|
DO 39 JBLK = 1, IWORK( IINDBL+M-1 )
|
|
IEND = IWORK( IINSPL+JBLK-1 )
|
|
IN = IEND - IBEGIN + 1
|
|
WEND = WBEGIN - 1
|
|
* check if any eigenvalues have to be refined in this block
|
|
36 CONTINUE
|
|
IF( WEND.LT.M ) THEN
|
|
IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
|
|
WEND = WEND + 1
|
|
GO TO 36
|
|
END IF
|
|
END IF
|
|
IF( WEND.LT.WBEGIN ) THEN
|
|
IBEGIN = IEND + 1
|
|
GO TO 39
|
|
END IF
|
|
|
|
OFFSET = IWORK(IINDW+WBEGIN-1)-1
|
|
IFIRST = IWORK(IINDW+WBEGIN-1)
|
|
ILAST = IWORK(IINDW+WEND-1)
|
|
RTOL2 = FOUR * EPS
|
|
CALL SLARRJ( IN,
|
|
$ WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
|
|
$ IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
|
|
$ WORK( INDERR+WBEGIN-1 ),
|
|
$ WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
|
|
$ TNRM, IINFO )
|
|
IBEGIN = IEND + 1
|
|
WBEGIN = WEND + 1
|
|
39 CONTINUE
|
|
ENDIF
|
|
*
|
|
* If matrix was scaled, then rescale eigenvalues appropriately.
|
|
*
|
|
IF( SCALE.NE.ONE ) THEN
|
|
CALL SSCAL( M, ONE / SCALE, W, 1 )
|
|
END IF
|
|
END IF
|
|
*
|
|
* If eigenvalues are not in increasing order, then sort them,
|
|
* possibly along with eigenvectors.
|
|
*
|
|
IF( NSPLIT.GT.1 .OR. N.EQ.2 ) THEN
|
|
IF( .NOT. WANTZ ) THEN
|
|
CALL SLASRT( 'I', M, W, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
INFO = 3
|
|
RETURN
|
|
END IF
|
|
ELSE
|
|
DO 60 J = 1, M - 1
|
|
I = 0
|
|
TMP = W( J )
|
|
DO 50 JJ = J + 1, M
|
|
IF( W( JJ ).LT.TMP ) THEN
|
|
I = JJ
|
|
TMP = W( JJ )
|
|
END IF
|
|
50 CONTINUE
|
|
IF( I.NE.0 ) THEN
|
|
W( I ) = W( J )
|
|
W( J ) = TMP
|
|
IF( WANTZ ) THEN
|
|
CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
|
|
ITMP = ISUPPZ( 2*I-1 )
|
|
ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
|
|
ISUPPZ( 2*J-1 ) = ITMP
|
|
ITMP = ISUPPZ( 2*I )
|
|
ISUPPZ( 2*I ) = ISUPPZ( 2*J )
|
|
ISUPPZ( 2*J ) = ITMP
|
|
END IF
|
|
END IF
|
|
60 CONTINUE
|
|
END IF
|
|
ENDIF
|
|
*
|
|
*
|
|
WORK( 1 ) = LWMIN
|
|
IWORK( 1 ) = LIWMIN
|
|
RETURN
|
|
*
|
|
* End of CSTEMR
|
|
*
|
|
END
|
|
|