You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1023 lines
35 KiB
1023 lines
35 KiB
*> \brief \b CTFSM solves a matrix equation (one operand is a triangular matrix in RFP format).
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CTFSM + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctfsm.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctfsm.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctfsm.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A,
|
|
* B, LDB )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANSR, DIAG, SIDE, TRANS, UPLO
|
|
* INTEGER LDB, M, N
|
|
* COMPLEX ALPHA
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX A( 0: * ), B( 0: LDB-1, 0: * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Level 3 BLAS like routine for A in RFP Format.
|
|
*>
|
|
*> CTFSM solves the matrix equation
|
|
*>
|
|
*> op( A )*X = alpha*B or X*op( A ) = alpha*B
|
|
*>
|
|
*> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
|
|
*> non-unit, upper or lower triangular matrix and op( A ) is one of
|
|
*>
|
|
*> op( A ) = A or op( A ) = A**H.
|
|
*>
|
|
*> A is in Rectangular Full Packed (RFP) Format.
|
|
*>
|
|
*> The matrix X is overwritten on B.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANSR
|
|
*> \verbatim
|
|
*> TRANSR is CHARACTER*1
|
|
*> = 'N': The Normal Form of RFP A is stored;
|
|
*> = 'C': The Conjugate-transpose Form of RFP A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> On entry, SIDE specifies whether op( A ) appears on the left
|
|
*> or right of X as follows:
|
|
*>
|
|
*> SIDE = 'L' or 'l' op( A )*X = alpha*B.
|
|
*>
|
|
*> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
|
|
*>
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> On entry, UPLO specifies whether the RFP matrix A came from
|
|
*> an upper or lower triangular matrix as follows:
|
|
*> UPLO = 'U' or 'u' RFP A came from an upper triangular matrix
|
|
*> UPLO = 'L' or 'l' RFP A came from a lower triangular matrix
|
|
*>
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> On entry, TRANS specifies the form of op( A ) to be used
|
|
*> in the matrix multiplication as follows:
|
|
*>
|
|
*> TRANS = 'N' or 'n' op( A ) = A.
|
|
*>
|
|
*> TRANS = 'C' or 'c' op( A ) = conjg( A' ).
|
|
*>
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> On entry, DIAG specifies whether or not RFP A is unit
|
|
*> triangular as follows:
|
|
*>
|
|
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
|
*>
|
|
*> DIAG = 'N' or 'n' A is not assumed to be unit
|
|
*> triangular.
|
|
*>
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> On entry, M specifies the number of rows of B. M must be at
|
|
*> least zero.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, N specifies the number of columns of B. N must be
|
|
*> at least zero.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is COMPLEX
|
|
*> On entry, ALPHA specifies the scalar alpha. When alpha is
|
|
*> zero then A is not referenced and B need not be set before
|
|
*> entry.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (N*(N+1)/2)
|
|
*> NT = N*(N+1)/2. On entry, the matrix A in RFP Format.
|
|
*> RFP Format is described by TRANSR, UPLO and N as follows:
|
|
*> If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
|
|
*> K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If
|
|
*> TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as
|
|
*> defined when TRANSR = 'N'. The contents of RFP A are defined
|
|
*> by UPLO as follows: If UPLO = 'U' the RFP A contains the NT
|
|
*> elements of upper packed A either in normal or
|
|
*> conjugate-transpose Format. If UPLO = 'L' the RFP A contains
|
|
*> the NT elements of lower packed A either in normal or
|
|
*> conjugate-transpose Format. The LDA of RFP A is (N+1)/2 when
|
|
*> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is
|
|
*> even and is N when is odd.
|
|
*> See the Note below for more details. Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (LDB,N)
|
|
*> Before entry, the leading m by n part of the array B must
|
|
*> contain the right-hand side matrix B, and on exit is
|
|
*> overwritten by the solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> On entry, LDB specifies the first dimension of B as declared
|
|
*> in the calling (sub) program. LDB must be at least
|
|
*> max( 1, m ).
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> We first consider Standard Packed Format when N is even.
|
|
*> We give an example where N = 6.
|
|
*>
|
|
*> AP is Upper AP is Lower
|
|
*>
|
|
*> 00 01 02 03 04 05 00
|
|
*> 11 12 13 14 15 10 11
|
|
*> 22 23 24 25 20 21 22
|
|
*> 33 34 35 30 31 32 33
|
|
*> 44 45 40 41 42 43 44
|
|
*> 55 50 51 52 53 54 55
|
|
*>
|
|
*>
|
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
|
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
|
|
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
|
|
*> conjugate-transpose of the first three columns of AP upper.
|
|
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
|
|
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
|
|
*> conjugate-transpose of the last three columns of AP lower.
|
|
*> To denote conjugate we place -- above the element. This covers the
|
|
*> case N even and TRANSR = 'N'.
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- --
|
|
*> 03 04 05 33 43 53
|
|
*> -- --
|
|
*> 13 14 15 00 44 54
|
|
*> --
|
|
*> 23 24 25 10 11 55
|
|
*>
|
|
*> 33 34 35 20 21 22
|
|
*> --
|
|
*> 00 44 45 30 31 32
|
|
*> -- --
|
|
*> 01 11 55 40 41 42
|
|
*> -- -- --
|
|
*> 02 12 22 50 51 52
|
|
*>
|
|
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
|
|
*> transpose of RFP A above. One therefore gets:
|
|
*>
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
|
|
*>
|
|
*>
|
|
*> We next consider Standard Packed Format when N is odd.
|
|
*> We give an example where N = 5.
|
|
*>
|
|
*> AP is Upper AP is Lower
|
|
*>
|
|
*> 00 01 02 03 04 00
|
|
*> 11 12 13 14 10 11
|
|
*> 22 23 24 20 21 22
|
|
*> 33 34 30 31 32 33
|
|
*> 44 40 41 42 43 44
|
|
*>
|
|
*>
|
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
|
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
|
|
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
|
|
*> conjugate-transpose of the first two columns of AP upper.
|
|
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
|
|
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
|
|
*> conjugate-transpose of the last two columns of AP lower.
|
|
*> To denote conjugate we place -- above the element. This covers the
|
|
*> case N odd and TRANSR = 'N'.
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- --
|
|
*> 02 03 04 00 33 43
|
|
*> --
|
|
*> 12 13 14 10 11 44
|
|
*>
|
|
*> 22 23 24 20 21 22
|
|
*> --
|
|
*> 00 33 34 30 31 32
|
|
*> -- --
|
|
*> 01 11 44 40 41 42
|
|
*>
|
|
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
|
|
*> transpose of RFP A above. One therefore gets:
|
|
*>
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 02 12 22 00 01 00 10 20 30 40 50
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 03 13 23 33 11 33 11 21 31 41 51
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 04 14 24 34 44 43 44 22 32 42 52
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A,
|
|
$ B, LDB )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANSR, DIAG, SIDE, TRANS, UPLO
|
|
INTEGER LDB, M, N
|
|
COMPLEX ALPHA
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX A( 0: * ), B( 0: LDB-1, 0: * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
* ..
|
|
* .. Parameters ..
|
|
COMPLEX CONE, CZERO
|
|
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
|
|
$ CZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LOWER, LSIDE, MISODD, NISODD, NORMALTRANSR,
|
|
$ NOTRANS
|
|
INTEGER M1, M2, N1, N2, K, INFO, I, J
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, CGEMM, CTRSM
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MOD
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
NORMALTRANSR = LSAME( TRANSR, 'N' )
|
|
LSIDE = LSAME( SIDE, 'L' )
|
|
LOWER = LSAME( UPLO, 'L' )
|
|
NOTRANS = LSAME( TRANS, 'N' )
|
|
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LSIDE .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
|
|
$ THEN
|
|
INFO = -5
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -6
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
|
|
INFO = -11
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CTFSM ', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return when ( (N.EQ.0).OR.(M.EQ.0) )
|
|
*
|
|
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
|
|
$ RETURN
|
|
*
|
|
* Quick return when ALPHA.EQ.(0E+0,0E+0)
|
|
*
|
|
IF( ALPHA.EQ.CZERO ) THEN
|
|
DO 20 J = 0, N - 1
|
|
DO 10 I = 0, M - 1
|
|
B( I, J ) = CZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( LSIDE ) THEN
|
|
*
|
|
* SIDE = 'L'
|
|
*
|
|
* A is M-by-M.
|
|
* If M is odd, set NISODD = .TRUE., and M1 and M2.
|
|
* If M is even, NISODD = .FALSE., and M.
|
|
*
|
|
IF( MOD( M, 2 ).EQ.0 ) THEN
|
|
MISODD = .FALSE.
|
|
K = M / 2
|
|
ELSE
|
|
MISODD = .TRUE.
|
|
IF( LOWER ) THEN
|
|
M2 = M / 2
|
|
M1 = M - M2
|
|
ELSE
|
|
M1 = M / 2
|
|
M2 = M - M1
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( MISODD ) THEN
|
|
*
|
|
* SIDE = 'L' and N is odd
|
|
*
|
|
IF( NORMALTRANSR ) THEN
|
|
*
|
|
* SIDE = 'L', N is odd, and TRANSR = 'N'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'N', and UPLO = 'L'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'L', and
|
|
* TRANS = 'N'
|
|
*
|
|
IF( M.EQ.1 ) THEN
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA,
|
|
$ A, M, B, LDB )
|
|
ELSE
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA,
|
|
$ A( 0 ), M, B, LDB )
|
|
CALL CGEMM( 'N', 'N', M2, N, M1, -CONE, A( M1 ),
|
|
$ M, B, LDB, ALPHA, B( M1, 0 ), LDB )
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, M2, N, CONE,
|
|
$ A( M ), M, B( M1, 0 ), LDB )
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'L', and
|
|
* TRANS = 'C'
|
|
*
|
|
IF( M.EQ.1 ) THEN
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, M1, N, ALPHA,
|
|
$ A( 0 ), M, B, LDB )
|
|
ELSE
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, M2, N, ALPHA,
|
|
$ A( M ), M, B( M1, 0 ), LDB )
|
|
CALL CGEMM( 'C', 'N', M1, N, M2, -CONE, A( M1 ),
|
|
$ M, B( M1, 0 ), LDB, ALPHA, B, LDB )
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, M1, N, CONE,
|
|
$ A( 0 ), M, B, LDB )
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'N', and UPLO = 'U'
|
|
*
|
|
IF( .NOT.NOTRANS ) THEN
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'U', and
|
|
* TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, M1, N, ALPHA,
|
|
$ A( M2 ), M, B, LDB )
|
|
CALL CGEMM( 'C', 'N', M2, N, M1, -CONE, A( 0 ), M,
|
|
$ B, LDB, ALPHA, B( M1, 0 ), LDB )
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, M2, N, CONE,
|
|
$ A( M1 ), M, B( M1, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'U', and
|
|
* TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, M2, N, ALPHA,
|
|
$ A( M1 ), M, B( M1, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'N', M1, N, M2, -CONE, A( 0 ), M,
|
|
$ B( M1, 0 ), LDB, ALPHA, B, LDB )
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, M1, N, CONE,
|
|
$ A( M2 ), M, B, LDB )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE = 'L', N is odd, and TRANSR = 'C'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'C', and UPLO = 'L'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'C', UPLO = 'L', and
|
|
* TRANS = 'N'
|
|
*
|
|
IF( M.EQ.1 ) THEN
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, M1, N, ALPHA,
|
|
$ A( 0 ), M1, B, LDB )
|
|
ELSE
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, M1, N, ALPHA,
|
|
$ A( 0 ), M1, B, LDB )
|
|
CALL CGEMM( 'C', 'N', M2, N, M1, -CONE,
|
|
$ A( M1*M1 ), M1, B, LDB, ALPHA,
|
|
$ B( M1, 0 ), LDB )
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, M2, N, CONE,
|
|
$ A( 1 ), M1, B( M1, 0 ), LDB )
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'C', UPLO = 'L', and
|
|
* TRANS = 'C'
|
|
*
|
|
IF( M.EQ.1 ) THEN
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, M1, N, ALPHA,
|
|
$ A( 0 ), M1, B, LDB )
|
|
ELSE
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, M2, N, ALPHA,
|
|
$ A( 1 ), M1, B( M1, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'N', M1, N, M2, -CONE,
|
|
$ A( M1*M1 ), M1, B( M1, 0 ), LDB,
|
|
$ ALPHA, B, LDB )
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, M1, N, CONE,
|
|
$ A( 0 ), M1, B, LDB )
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'C', and UPLO = 'U'
|
|
*
|
|
IF( .NOT.NOTRANS ) THEN
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'C', UPLO = 'U', and
|
|
* TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, M1, N, ALPHA,
|
|
$ A( M2*M2 ), M2, B, LDB )
|
|
CALL CGEMM( 'N', 'N', M2, N, M1, -CONE, A( 0 ), M2,
|
|
$ B, LDB, ALPHA, B( M1, 0 ), LDB )
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, M2, N, CONE,
|
|
$ A( M1*M2 ), M2, B( M1, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is odd, TRANSR = 'C', UPLO = 'U', and
|
|
* TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, M2, N, ALPHA,
|
|
$ A( M1*M2 ), M2, B( M1, 0 ), LDB )
|
|
CALL CGEMM( 'C', 'N', M1, N, M2, -CONE, A( 0 ), M2,
|
|
$ B( M1, 0 ), LDB, ALPHA, B, LDB )
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, M1, N, CONE,
|
|
$ A( M2*M2 ), M2, B, LDB )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE = 'L' and N is even
|
|
*
|
|
IF( NORMALTRANSR ) THEN
|
|
*
|
|
* SIDE = 'L', N is even, and TRANSR = 'N'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'N', and UPLO = 'L'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'N', UPLO = 'L',
|
|
* and TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, K, N, ALPHA,
|
|
$ A( 1 ), M+1, B, LDB )
|
|
CALL CGEMM( 'N', 'N', K, N, K, -CONE, A( K+1 ),
|
|
$ M+1, B, LDB, ALPHA, B( K, 0 ), LDB )
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, K, N, CONE,
|
|
$ A( 0 ), M+1, B( K, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'N', UPLO = 'L',
|
|
* and TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, K, N, ALPHA,
|
|
$ A( 0 ), M+1, B( K, 0 ), LDB )
|
|
CALL CGEMM( 'C', 'N', K, N, K, -CONE, A( K+1 ),
|
|
$ M+1, B( K, 0 ), LDB, ALPHA, B, LDB )
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, K, N, CONE,
|
|
$ A( 1 ), M+1, B, LDB )
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'N', and UPLO = 'U'
|
|
*
|
|
IF( .NOT.NOTRANS ) THEN
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'N', UPLO = 'U',
|
|
* and TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, K, N, ALPHA,
|
|
$ A( K+1 ), M+1, B, LDB )
|
|
CALL CGEMM( 'C', 'N', K, N, K, -CONE, A( 0 ), M+1,
|
|
$ B, LDB, ALPHA, B( K, 0 ), LDB )
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, K, N, CONE,
|
|
$ A( K ), M+1, B( K, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'N', UPLO = 'U',
|
|
* and TRANS = 'C'
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, K, N, ALPHA,
|
|
$ A( K ), M+1, B( K, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'N', K, N, K, -CONE, A( 0 ), M+1,
|
|
$ B( K, 0 ), LDB, ALPHA, B, LDB )
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, K, N, CONE,
|
|
$ A( K+1 ), M+1, B, LDB )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE = 'L', N is even, and TRANSR = 'C'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'C', and UPLO = 'L'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'C', UPLO = 'L',
|
|
* and TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, K, N, ALPHA,
|
|
$ A( K ), K, B, LDB )
|
|
CALL CGEMM( 'C', 'N', K, N, K, -CONE,
|
|
$ A( K*( K+1 ) ), K, B, LDB, ALPHA,
|
|
$ B( K, 0 ), LDB )
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, K, N, CONE,
|
|
$ A( 0 ), K, B( K, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'C', UPLO = 'L',
|
|
* and TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, K, N, ALPHA,
|
|
$ A( 0 ), K, B( K, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'N', K, N, K, -CONE,
|
|
$ A( K*( K+1 ) ), K, B( K, 0 ), LDB,
|
|
$ ALPHA, B, LDB )
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, K, N, CONE,
|
|
$ A( K ), K, B, LDB )
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'C', and UPLO = 'U'
|
|
*
|
|
IF( .NOT.NOTRANS ) THEN
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'C', UPLO = 'U',
|
|
* and TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'L', 'U', 'C', DIAG, K, N, ALPHA,
|
|
$ A( K*( K+1 ) ), K, B, LDB )
|
|
CALL CGEMM( 'N', 'N', K, N, K, -CONE, A( 0 ), K, B,
|
|
$ LDB, ALPHA, B( K, 0 ), LDB )
|
|
CALL CTRSM( 'L', 'L', 'N', DIAG, K, N, CONE,
|
|
$ A( K*K ), K, B( K, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='L', N is even, TRANSR = 'C', UPLO = 'U',
|
|
* and TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'L', 'L', 'C', DIAG, K, N, ALPHA,
|
|
$ A( K*K ), K, B( K, 0 ), LDB )
|
|
CALL CGEMM( 'C', 'N', K, N, K, -CONE, A( 0 ), K,
|
|
$ B( K, 0 ), LDB, ALPHA, B, LDB )
|
|
CALL CTRSM( 'L', 'U', 'N', DIAG, K, N, CONE,
|
|
$ A( K*( K+1 ) ), K, B, LDB )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE = 'R'
|
|
*
|
|
* A is N-by-N.
|
|
* If N is odd, set NISODD = .TRUE., and N1 and N2.
|
|
* If N is even, NISODD = .FALSE., and K.
|
|
*
|
|
IF( MOD( N, 2 ).EQ.0 ) THEN
|
|
NISODD = .FALSE.
|
|
K = N / 2
|
|
ELSE
|
|
NISODD = .TRUE.
|
|
IF( LOWER ) THEN
|
|
N2 = N / 2
|
|
N1 = N - N2
|
|
ELSE
|
|
N1 = N / 2
|
|
N2 = N - N1
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( NISODD ) THEN
|
|
*
|
|
* SIDE = 'R' and N is odd
|
|
*
|
|
IF( NORMALTRANSR ) THEN
|
|
*
|
|
* SIDE = 'R', N is odd, and TRANSR = 'N'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'N', and UPLO = 'L'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'L', and
|
|
* TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'R', 'U', 'C', DIAG, M, N2, ALPHA,
|
|
$ A( N ), N, B( 0, N1 ), LDB )
|
|
CALL CGEMM( 'N', 'N', M, N1, N2, -CONE, B( 0, N1 ),
|
|
$ LDB, A( N1 ), N, ALPHA, B( 0, 0 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'L', 'N', DIAG, M, N1, CONE,
|
|
$ A( 0 ), N, B( 0, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'L', and
|
|
* TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'R', 'L', 'C', DIAG, M, N1, ALPHA,
|
|
$ A( 0 ), N, B( 0, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'C', M, N2, N1, -CONE, B( 0, 0 ),
|
|
$ LDB, A( N1 ), N, ALPHA, B( 0, N1 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'U', 'N', DIAG, M, N2, CONE,
|
|
$ A( N ), N, B( 0, N1 ), LDB )
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'N', and UPLO = 'U'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'U', and
|
|
* TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'R', 'L', 'C', DIAG, M, N1, ALPHA,
|
|
$ A( N2 ), N, B( 0, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'N', M, N2, N1, -CONE, B( 0, 0 ),
|
|
$ LDB, A( 0 ), N, ALPHA, B( 0, N1 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'U', 'N', DIAG, M, N2, CONE,
|
|
$ A( N1 ), N, B( 0, N1 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'U', and
|
|
* TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'R', 'U', 'C', DIAG, M, N2, ALPHA,
|
|
$ A( N1 ), N, B( 0, N1 ), LDB )
|
|
CALL CGEMM( 'N', 'C', M, N1, N2, -CONE, B( 0, N1 ),
|
|
$ LDB, A( 0 ), N, ALPHA, B( 0, 0 ), LDB )
|
|
CALL CTRSM( 'R', 'L', 'N', DIAG, M, N1, CONE,
|
|
$ A( N2 ), N, B( 0, 0 ), LDB )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE = 'R', N is odd, and TRANSR = 'C'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'C', and UPLO = 'L'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'C', UPLO = 'L', and
|
|
* TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'R', 'L', 'N', DIAG, M, N2, ALPHA,
|
|
$ A( 1 ), N1, B( 0, N1 ), LDB )
|
|
CALL CGEMM( 'N', 'C', M, N1, N2, -CONE, B( 0, N1 ),
|
|
$ LDB, A( N1*N1 ), N1, ALPHA, B( 0, 0 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'U', 'C', DIAG, M, N1, CONE,
|
|
$ A( 0 ), N1, B( 0, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'C', UPLO = 'L', and
|
|
* TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'R', 'U', 'N', DIAG, M, N1, ALPHA,
|
|
$ A( 0 ), N1, B( 0, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'N', M, N2, N1, -CONE, B( 0, 0 ),
|
|
$ LDB, A( N1*N1 ), N1, ALPHA, B( 0, N1 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'L', 'C', DIAG, M, N2, CONE,
|
|
$ A( 1 ), N1, B( 0, N1 ), LDB )
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'C', and UPLO = 'U'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'C', UPLO = 'U', and
|
|
* TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'R', 'U', 'N', DIAG, M, N1, ALPHA,
|
|
$ A( N2*N2 ), N2, B( 0, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'C', M, N2, N1, -CONE, B( 0, 0 ),
|
|
$ LDB, A( 0 ), N2, ALPHA, B( 0, N1 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'L', 'C', DIAG, M, N2, CONE,
|
|
$ A( N1*N2 ), N2, B( 0, N1 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is odd, TRANSR = 'C', UPLO = 'U', and
|
|
* TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'R', 'L', 'N', DIAG, M, N2, ALPHA,
|
|
$ A( N1*N2 ), N2, B( 0, N1 ), LDB )
|
|
CALL CGEMM( 'N', 'N', M, N1, N2, -CONE, B( 0, N1 ),
|
|
$ LDB, A( 0 ), N2, ALPHA, B( 0, 0 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'U', 'C', DIAG, M, N1, CONE,
|
|
$ A( N2*N2 ), N2, B( 0, 0 ), LDB )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE = 'R' and N is even
|
|
*
|
|
IF( NORMALTRANSR ) THEN
|
|
*
|
|
* SIDE = 'R', N is even, and TRANSR = 'N'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'N', and UPLO = 'L'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'N', UPLO = 'L',
|
|
* and TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'R', 'U', 'C', DIAG, M, K, ALPHA,
|
|
$ A( 0 ), N+1, B( 0, K ), LDB )
|
|
CALL CGEMM( 'N', 'N', M, K, K, -CONE, B( 0, K ),
|
|
$ LDB, A( K+1 ), N+1, ALPHA, B( 0, 0 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'L', 'N', DIAG, M, K, CONE,
|
|
$ A( 1 ), N+1, B( 0, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'N', UPLO = 'L',
|
|
* and TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'R', 'L', 'C', DIAG, M, K, ALPHA,
|
|
$ A( 1 ), N+1, B( 0, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'C', M, K, K, -CONE, B( 0, 0 ),
|
|
$ LDB, A( K+1 ), N+1, ALPHA, B( 0, K ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'U', 'N', DIAG, M, K, CONE,
|
|
$ A( 0 ), N+1, B( 0, K ), LDB )
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'N', and UPLO = 'U'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'N', UPLO = 'U',
|
|
* and TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'R', 'L', 'C', DIAG, M, K, ALPHA,
|
|
$ A( K+1 ), N+1, B( 0, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'N', M, K, K, -CONE, B( 0, 0 ),
|
|
$ LDB, A( 0 ), N+1, ALPHA, B( 0, K ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'U', 'N', DIAG, M, K, CONE,
|
|
$ A( K ), N+1, B( 0, K ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'N', UPLO = 'U',
|
|
* and TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'R', 'U', 'C', DIAG, M, K, ALPHA,
|
|
$ A( K ), N+1, B( 0, K ), LDB )
|
|
CALL CGEMM( 'N', 'C', M, K, K, -CONE, B( 0, K ),
|
|
$ LDB, A( 0 ), N+1, ALPHA, B( 0, 0 ),
|
|
$ LDB )
|
|
CALL CTRSM( 'R', 'L', 'N', DIAG, M, K, CONE,
|
|
$ A( K+1 ), N+1, B( 0, 0 ), LDB )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE = 'R', N is even, and TRANSR = 'C'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'C', and UPLO = 'L'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'C', UPLO = 'L',
|
|
* and TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'R', 'L', 'N', DIAG, M, K, ALPHA,
|
|
$ A( 0 ), K, B( 0, K ), LDB )
|
|
CALL CGEMM( 'N', 'C', M, K, K, -CONE, B( 0, K ),
|
|
$ LDB, A( ( K+1 )*K ), K, ALPHA,
|
|
$ B( 0, 0 ), LDB )
|
|
CALL CTRSM( 'R', 'U', 'C', DIAG, M, K, CONE,
|
|
$ A( K ), K, B( 0, 0 ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'C', UPLO = 'L',
|
|
* and TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'R', 'U', 'N', DIAG, M, K, ALPHA,
|
|
$ A( K ), K, B( 0, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'N', M, K, K, -CONE, B( 0, 0 ),
|
|
$ LDB, A( ( K+1 )*K ), K, ALPHA,
|
|
$ B( 0, K ), LDB )
|
|
CALL CTRSM( 'R', 'L', 'C', DIAG, M, K, CONE,
|
|
$ A( 0 ), K, B( 0, K ), LDB )
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'C', and UPLO = 'U'
|
|
*
|
|
IF( NOTRANS ) THEN
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'C', UPLO = 'U',
|
|
* and TRANS = 'N'
|
|
*
|
|
CALL CTRSM( 'R', 'U', 'N', DIAG, M, K, ALPHA,
|
|
$ A( ( K+1 )*K ), K, B( 0, 0 ), LDB )
|
|
CALL CGEMM( 'N', 'C', M, K, K, -CONE, B( 0, 0 ),
|
|
$ LDB, A( 0 ), K, ALPHA, B( 0, K ), LDB )
|
|
CALL CTRSM( 'R', 'L', 'C', DIAG, M, K, CONE,
|
|
$ A( K*K ), K, B( 0, K ), LDB )
|
|
*
|
|
ELSE
|
|
*
|
|
* SIDE ='R', N is even, TRANSR = 'C', UPLO = 'U',
|
|
* and TRANS = 'C'
|
|
*
|
|
CALL CTRSM( 'R', 'L', 'N', DIAG, M, K, ALPHA,
|
|
$ A( K*K ), K, B( 0, K ), LDB )
|
|
CALL CGEMM( 'N', 'N', M, K, K, -CONE, B( 0, K ),
|
|
$ LDB, A( 0 ), K, ALPHA, B( 0, 0 ), LDB )
|
|
CALL CTRSM( 'R', 'U', 'C', DIAG, M, K, CONE,
|
|
$ A( ( K+1 )*K ), K, B( 0, 0 ), LDB )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CTFSM
|
|
*
|
|
END
|
|
|