You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
370 lines
12 KiB
370 lines
12 KiB
*> \brief \b CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CTGEX2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgex2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgex2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgex2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
|
|
* LDZ, J1, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL WANTQ, WANTZ
|
|
* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
* $ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
|
|
*> in an upper triangular matrix pair (A, B) by an unitary equivalence
|
|
*> transformation.
|
|
*>
|
|
*> (A, B) must be in generalized Schur canonical form, that is, A and
|
|
*> B are both upper triangular.
|
|
*>
|
|
*> Optionally, the matrices Q and Z of generalized Schur vectors are
|
|
*> updated.
|
|
*>
|
|
*> Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
|
|
*> Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] WANTQ
|
|
*> \verbatim
|
|
*> WANTQ is LOGICAL
|
|
*> .TRUE. : update the left transformation matrix Q;
|
|
*> .FALSE.: do not update Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] WANTZ
|
|
*> \verbatim
|
|
*> WANTZ is LOGICAL
|
|
*> .TRUE. : update the right transformation matrix Z;
|
|
*> .FALSE.: do not update Z.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the matrix A in the pair (A, B).
|
|
*> On exit, the updated matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (LDB,N)
|
|
*> On entry, the matrix B in the pair (A, B).
|
|
*> On exit, the updated matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ,N)
|
|
*> If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
|
|
*> the updated matrix Q.
|
|
*> Not referenced if WANTQ = .FALSE..
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= 1;
|
|
*> If WANTQ = .TRUE., LDQ >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is COMPLEX array, dimension (LDZ,N)
|
|
*> If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
|
|
*> the updated matrix Z.
|
|
*> Not referenced if WANTZ = .FALSE..
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1;
|
|
*> If WANTZ = .TRUE., LDZ >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] J1
|
|
*> \verbatim
|
|
*> J1 is INTEGER
|
|
*> The index to the first block (A11, B11).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> =0: Successful exit.
|
|
*> =1: The transformed matrix pair (A, B) would be too far
|
|
*> from generalized Schur form; the problem is ill-
|
|
*> conditioned.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGEauxiliary
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> In the current code both weak and strong stability tests are
|
|
*> performed. The user can omit the strong stability test by changing
|
|
*> the internal logical parameter WANDS to .FALSE.. See ref. [2] for
|
|
*> details.
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
|
*> Umea University, S-901 87 Umea, Sweden.
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
|
|
*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
|
|
*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
|
|
*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
|
|
*> \n
|
|
*> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
|
|
*> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
|
|
*> Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
|
|
*> Department of Computing Science, Umea University, S-901 87 Umea,
|
|
*> Sweden, 1994. Also as LAPACK Working Note 87. To appear in
|
|
*> Numerical Algorithms, 1996.
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
|
|
$ LDZ, J1, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL WANTQ, WANTZ
|
|
INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
$ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
|
|
$ CONE = ( 1.0E+0, 0.0E+0 ) )
|
|
REAL TWENTY
|
|
PARAMETER ( TWENTY = 2.0E+1 )
|
|
INTEGER LDST
|
|
PARAMETER ( LDST = 2 )
|
|
LOGICAL WANDS
|
|
PARAMETER ( WANDS = .TRUE. )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL STRONG, WEAK
|
|
INTEGER I, M
|
|
REAL CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SUM,
|
|
$ THRESHA, THRESHB
|
|
COMPLEX CDUM, F, G, SQ, SZ
|
|
* ..
|
|
* .. Local Arrays ..
|
|
COMPLEX S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH
|
|
EXTERNAL SLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CLACPY, CLARTG, CLASSQ, CROT
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, CONJG, MAX, REAL, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.1 )
|
|
$ RETURN
|
|
*
|
|
M = LDST
|
|
WEAK = .FALSE.
|
|
STRONG = .FALSE.
|
|
*
|
|
* Make a local copy of selected block in (A, B)
|
|
*
|
|
CALL CLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
|
|
CALL CLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
|
|
*
|
|
* Compute the threshold for testing the acceptance of swapping.
|
|
*
|
|
EPS = SLAMCH( 'P' )
|
|
SMLNUM = SLAMCH( 'S' ) / EPS
|
|
SCALE = REAL( CZERO )
|
|
SUM = REAL( CONE )
|
|
CALL CLACPY( 'Full', M, M, S, LDST, WORK, M )
|
|
CALL CLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
|
|
CALL CLASSQ( M*M, WORK, 1, SCALE, SUM )
|
|
SA = SCALE*SQRT( SUM )
|
|
SCALE = DBLE( CZERO )
|
|
SUM = DBLE( CONE )
|
|
CALL CLASSQ( M*M, WORK(M*M+1), 1, SCALE, SUM )
|
|
SB = SCALE*SQRT( SUM )
|
|
*
|
|
* THRES has been changed from
|
|
* THRESH = MAX( TEN*EPS*SA, SMLNUM )
|
|
* to
|
|
* THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
|
|
* on 04/01/10.
|
|
* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
|
|
* Jim Demmel and Guillaume Revy. See forum post 1783.
|
|
*
|
|
THRESHA = MAX( TWENTY*EPS*SA, SMLNUM )
|
|
THRESHB = MAX( TWENTY*EPS*SB, SMLNUM )
|
|
*
|
|
* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
|
|
* using Givens rotations and perform the swap tentatively.
|
|
*
|
|
F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
|
|
G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
|
|
SA = ABS( S( 2, 2 ) ) * ABS( T( 1, 1 ) )
|
|
SB = ABS( S( 1, 1 ) ) * ABS( T( 2, 2 ) )
|
|
CALL CLARTG( G, F, CZ, SZ, CDUM )
|
|
SZ = -SZ
|
|
CALL CROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, CONJG( SZ ) )
|
|
CALL CROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, CONJG( SZ ) )
|
|
IF( SA.GE.SB ) THEN
|
|
CALL CLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
|
|
ELSE
|
|
CALL CLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
|
|
END IF
|
|
CALL CROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
|
|
CALL CROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
|
|
*
|
|
* Weak stability test: |S21| <= O(EPS F-norm((A)))
|
|
* and |T21| <= O(EPS F-norm((B)))
|
|
*
|
|
WEAK = ABS( S( 2, 1 ) ).LE.THRESHA .AND.
|
|
$ ABS( T( 2, 1 ) ).LE.THRESHB
|
|
IF( .NOT.WEAK )
|
|
$ GO TO 20
|
|
*
|
|
IF( WANDS ) THEN
|
|
*
|
|
* Strong stability test:
|
|
* F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B)))
|
|
*
|
|
CALL CLACPY( 'Full', M, M, S, LDST, WORK, M )
|
|
CALL CLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
|
|
CALL CROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -CONJG( SZ ) )
|
|
CALL CROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -CONJG( SZ ) )
|
|
CALL CROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
|
|
CALL CROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
|
|
DO 10 I = 1, 2
|
|
WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
|
|
WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
|
|
WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
|
|
WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
|
|
10 CONTINUE
|
|
SCALE = DBLE( CZERO )
|
|
SUM = DBLE( CONE )
|
|
CALL CLASSQ( M*M, WORK, 1, SCALE, SUM )
|
|
SA = SCALE*SQRT( SUM )
|
|
SCALE = DBLE( CZERO )
|
|
SUM = DBLE( CONE )
|
|
CALL CLASSQ( M*M, WORK(M*M+1), 1, SCALE, SUM )
|
|
SB = SCALE*SQRT( SUM )
|
|
STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
|
|
IF( .NOT.STRONG )
|
|
$ GO TO 20
|
|
END IF
|
|
*
|
|
* If the swap is accepted ("weakly" and "strongly"), apply the
|
|
* equivalence transformations to the original matrix pair (A,B)
|
|
*
|
|
CALL CROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ, CONJG( SZ ) )
|
|
CALL CROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ, CONJG( SZ ) )
|
|
CALL CROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
|
|
CALL CROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
|
|
*
|
|
* Set N1 by N2 (2,1) blocks to 0
|
|
*
|
|
A( J1+1, J1 ) = CZERO
|
|
B( J1+1, J1 ) = CZERO
|
|
*
|
|
* Accumulate transformations into Q and Z if requested.
|
|
*
|
|
IF( WANTZ )
|
|
$ CALL CROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ, CONJG( SZ ) )
|
|
IF( WANTQ )
|
|
$ CALL CROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ, CONJG( SQ ) )
|
|
*
|
|
* Exit with INFO = 0 if swap was successfully performed.
|
|
*
|
|
RETURN
|
|
*
|
|
* Exit with INFO = 1 if swap was rejected.
|
|
*
|
|
20 CONTINUE
|
|
INFO = 1
|
|
RETURN
|
|
*
|
|
* End of CTGEX2
|
|
*
|
|
END
|
|
|