You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
297 lines
8.6 KiB
297 lines
8.6 KiB
*> \brief \b CTGEXC
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CTGEXC + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgexc.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgexc.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgexc.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
|
|
* LDZ, IFST, ILST, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL WANTQ, WANTZ
|
|
* INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
* $ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CTGEXC reorders the generalized Schur decomposition of a complex
|
|
*> matrix pair (A,B), using an unitary equivalence transformation
|
|
*> (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with
|
|
*> row index IFST is moved to row ILST.
|
|
*>
|
|
*> (A, B) must be in generalized Schur canonical form, that is, A and
|
|
*> B are both upper triangular.
|
|
*>
|
|
*> Optionally, the matrices Q and Z of generalized Schur vectors are
|
|
*> updated.
|
|
*>
|
|
*> Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
|
|
*> Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] WANTQ
|
|
*> \verbatim
|
|
*> WANTQ is LOGICAL
|
|
*> .TRUE. : update the left transformation matrix Q;
|
|
*> .FALSE.: do not update Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] WANTZ
|
|
*> \verbatim
|
|
*> WANTZ is LOGICAL
|
|
*> .TRUE. : update the right transformation matrix Z;
|
|
*> .FALSE.: do not update Z.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the upper triangular matrix A in the pair (A, B).
|
|
*> On exit, the updated matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (LDB,N)
|
|
*> On entry, the upper triangular matrix B in the pair (A, B).
|
|
*> On exit, the updated matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ,N)
|
|
*> On entry, if WANTQ = .TRUE., the unitary matrix Q.
|
|
*> On exit, the updated matrix Q.
|
|
*> If WANTQ = .FALSE., Q is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= 1;
|
|
*> If WANTQ = .TRUE., LDQ >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is COMPLEX array, dimension (LDZ,N)
|
|
*> On entry, if WANTZ = .TRUE., the unitary matrix Z.
|
|
*> On exit, the updated matrix Z.
|
|
*> If WANTZ = .FALSE., Z is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1;
|
|
*> If WANTZ = .TRUE., LDZ >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IFST
|
|
*> \verbatim
|
|
*> IFST is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ILST
|
|
*> \verbatim
|
|
*> ILST is INTEGER
|
|
*> Specify the reordering of the diagonal blocks of (A, B).
|
|
*> The block with row index IFST is moved to row ILST, by a
|
|
*> sequence of swapping between adjacent blocks.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> =0: Successful exit.
|
|
*> <0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> =1: The transformed matrix pair (A, B) would be too far
|
|
*> from generalized Schur form; the problem is ill-
|
|
*> conditioned. (A, B) may have been partially reordered,
|
|
*> and ILST points to the first row of the current
|
|
*> position of the block being moved.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGEcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
|
*> Umea University, S-901 87 Umea, Sweden.
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
|
|
*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
|
|
*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
|
|
*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
|
|
*> \n
|
|
*> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
|
|
*> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
|
|
*> Estimation: Theory, Algorithms and Software, Report
|
|
*> UMINF - 94.04, Department of Computing Science, Umea University,
|
|
*> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
|
|
*> To appear in Numerical Algorithms, 1996.
|
|
*> \n
|
|
*> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
|
|
*> for Solving the Generalized Sylvester Equation and Estimating the
|
|
*> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
|
|
*> Department of Computing Science, Umea University, S-901 87 Umea,
|
|
*> Sweden, December 1993, Revised April 1994, Also as LAPACK working
|
|
*> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
|
|
*> 1996.
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
|
|
$ LDZ, IFST, ILST, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL WANTQ, WANTZ
|
|
INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
$ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER HERE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CTGEX2, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode and test input arguments.
|
|
INFO = 0
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. ( LDQ.LT.MAX( 1, N ) ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. ( LDZ.LT.MAX( 1, N ) ) ) THEN
|
|
INFO = -11
|
|
ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN
|
|
INFO = -12
|
|
ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN
|
|
INFO = -13
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CTGEXC', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.1 )
|
|
$ RETURN
|
|
IF( IFST.EQ.ILST )
|
|
$ RETURN
|
|
*
|
|
IF( IFST.LT.ILST ) THEN
|
|
*
|
|
HERE = IFST
|
|
*
|
|
10 CONTINUE
|
|
*
|
|
* Swap with next one below
|
|
*
|
|
CALL CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
|
|
$ HERE, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
ILST = HERE
|
|
RETURN
|
|
END IF
|
|
HERE = HERE + 1
|
|
IF( HERE.LT.ILST )
|
|
$ GO TO 10
|
|
HERE = HERE - 1
|
|
ELSE
|
|
HERE = IFST - 1
|
|
*
|
|
20 CONTINUE
|
|
*
|
|
* Swap with next one above
|
|
*
|
|
CALL CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
|
|
$ HERE, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
ILST = HERE
|
|
RETURN
|
|
END IF
|
|
HERE = HERE - 1
|
|
IF( HERE.GE.ILST )
|
|
$ GO TO 20
|
|
HERE = HERE + 1
|
|
END IF
|
|
ILST = HERE
|
|
RETURN
|
|
*
|
|
* End of CTGEXC
|
|
*
|
|
END
|
|
|