You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
647 lines
22 KiB
647 lines
22 KiB
*> \brief <b> DGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DGEESX + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeesx.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeesx.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeesx.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
|
|
* WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
|
|
* IWORK, LIWORK, BWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBVS, SENSE, SORT
|
|
* INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
|
|
* DOUBLE PRECISION RCONDE, RCONDV
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL BWORK( * )
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
|
|
* $ WR( * )
|
|
* ..
|
|
* .. Function Arguments ..
|
|
* LOGICAL SELECT
|
|
* EXTERNAL SELECT
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGEESX computes for an N-by-N real nonsymmetric matrix A, the
|
|
*> eigenvalues, the real Schur form T, and, optionally, the matrix of
|
|
*> Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
|
|
*>
|
|
*> Optionally, it also orders the eigenvalues on the diagonal of the
|
|
*> real Schur form so that selected eigenvalues are at the top left;
|
|
*> computes a reciprocal condition number for the average of the
|
|
*> selected eigenvalues (RCONDE); and computes a reciprocal condition
|
|
*> number for the right invariant subspace corresponding to the
|
|
*> selected eigenvalues (RCONDV). The leading columns of Z form an
|
|
*> orthonormal basis for this invariant subspace.
|
|
*>
|
|
*> For further explanation of the reciprocal condition numbers RCONDE
|
|
*> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
|
|
*> these quantities are called s and sep respectively).
|
|
*>
|
|
*> A real matrix is in real Schur form if it is upper quasi-triangular
|
|
*> with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
|
|
*> the form
|
|
*> [ a b ]
|
|
*> [ c a ]
|
|
*>
|
|
*> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBVS
|
|
*> \verbatim
|
|
*> JOBVS is CHARACTER*1
|
|
*> = 'N': Schur vectors are not computed;
|
|
*> = 'V': Schur vectors are computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SORT
|
|
*> \verbatim
|
|
*> SORT is CHARACTER*1
|
|
*> Specifies whether or not to order the eigenvalues on the
|
|
*> diagonal of the Schur form.
|
|
*> = 'N': Eigenvalues are not ordered;
|
|
*> = 'S': Eigenvalues are ordered (see SELECT).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SELECT
|
|
*> \verbatim
|
|
*> SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
|
|
*> SELECT must be declared EXTERNAL in the calling subroutine.
|
|
*> If SORT = 'S', SELECT is used to select eigenvalues to sort
|
|
*> to the top left of the Schur form.
|
|
*> If SORT = 'N', SELECT is not referenced.
|
|
*> An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
|
|
*> SELECT(WR(j),WI(j)) is true; i.e., if either one of a
|
|
*> complex conjugate pair of eigenvalues is selected, then both
|
|
*> are. Note that a selected complex eigenvalue may no longer
|
|
*> satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
|
|
*> ordering may change the value of complex eigenvalues
|
|
*> (especially if the eigenvalue is ill-conditioned); in this
|
|
*> case INFO may be set to N+3 (see INFO below).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SENSE
|
|
*> \verbatim
|
|
*> SENSE is CHARACTER*1
|
|
*> Determines which reciprocal condition numbers are computed.
|
|
*> = 'N': None are computed;
|
|
*> = 'E': Computed for average of selected eigenvalues only;
|
|
*> = 'V': Computed for selected right invariant subspace only;
|
|
*> = 'B': Computed for both.
|
|
*> If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA, N)
|
|
*> On entry, the N-by-N matrix A.
|
|
*> On exit, A is overwritten by its real Schur form T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SDIM
|
|
*> \verbatim
|
|
*> SDIM is INTEGER
|
|
*> If SORT = 'N', SDIM = 0.
|
|
*> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
|
|
*> for which SELECT is true. (Complex conjugate
|
|
*> pairs for which SELECT is true for either
|
|
*> eigenvalue count as 2.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WR
|
|
*> \verbatim
|
|
*> WR is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WI
|
|
*> \verbatim
|
|
*> WI is DOUBLE PRECISION array, dimension (N)
|
|
*> WR and WI contain the real and imaginary parts, respectively,
|
|
*> of the computed eigenvalues, in the same order that they
|
|
*> appear on the diagonal of the output Schur form T. Complex
|
|
*> conjugate pairs of eigenvalues appear consecutively with the
|
|
*> eigenvalue having the positive imaginary part first.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VS
|
|
*> \verbatim
|
|
*> VS is DOUBLE PRECISION array, dimension (LDVS,N)
|
|
*> If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
|
|
*> vectors.
|
|
*> If JOBVS = 'N', VS is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVS
|
|
*> \verbatim
|
|
*> LDVS is INTEGER
|
|
*> The leading dimension of the array VS. LDVS >= 1, and if
|
|
*> JOBVS = 'V', LDVS >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RCONDE
|
|
*> \verbatim
|
|
*> RCONDE is DOUBLE PRECISION
|
|
*> If SENSE = 'E' or 'B', RCONDE contains the reciprocal
|
|
*> condition number for the average of the selected eigenvalues.
|
|
*> Not referenced if SENSE = 'N' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RCONDV
|
|
*> \verbatim
|
|
*> RCONDV is DOUBLE PRECISION
|
|
*> If SENSE = 'V' or 'B', RCONDV contains the reciprocal
|
|
*> condition number for the selected right invariant subspace.
|
|
*> Not referenced if SENSE = 'N' or 'E'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,3*N).
|
|
*> Also, if SENSE = 'E' or 'V' or 'B',
|
|
*> LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
|
|
*> selected eigenvalues computed by this routine. Note that
|
|
*> N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
|
|
*> returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
|
|
*> 'B' this may not be large enough.
|
|
*> For good performance, LWORK must generally be larger.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates upper bounds on the optimal sizes of the
|
|
*> arrays WORK and IWORK, returns these values as the first
|
|
*> entries of the WORK and IWORK arrays, and no error messages
|
|
*> related to LWORK or LIWORK are issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
|
|
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LIWORK
|
|
*> \verbatim
|
|
*> LIWORK is INTEGER
|
|
*> The dimension of the array IWORK.
|
|
*> LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
|
|
*> Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
|
|
*> only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
|
|
*> may not be large enough.
|
|
*>
|
|
*> If LIWORK = -1, then a workspace query is assumed; the
|
|
*> routine only calculates upper bounds on the optimal sizes of
|
|
*> the arrays WORK and IWORK, returns these values as the first
|
|
*> entries of the WORK and IWORK arrays, and no error messages
|
|
*> related to LWORK or LIWORK are issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BWORK
|
|
*> \verbatim
|
|
*> BWORK is LOGICAL array, dimension (N)
|
|
*> Not referenced if SORT = 'N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: if INFO = i, and i is
|
|
*> <= N: the QR algorithm failed to compute all the
|
|
*> eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
|
|
*> contain those eigenvalues which have converged; if
|
|
*> JOBVS = 'V', VS contains the transformation which
|
|
*> reduces A to its partially converged Schur form.
|
|
*> = N+1: the eigenvalues could not be reordered because some
|
|
*> eigenvalues were too close to separate (the problem
|
|
*> is very ill-conditioned);
|
|
*> = N+2: after reordering, roundoff changed values of some
|
|
*> complex eigenvalues so that leading eigenvalues in
|
|
*> the Schur form no longer satisfy SELECT=.TRUE. This
|
|
*> could also be caused by underflow due to scaling.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleGEeigen
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
|
|
$ WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
|
|
$ IWORK, LIWORK, BWORK, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBVS, SENSE, SORT
|
|
INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
|
|
DOUBLE PRECISION RCONDE, RCONDV
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL BWORK( * )
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
|
|
$ WR( * )
|
|
* ..
|
|
* .. Function Arguments ..
|
|
LOGICAL SELECT
|
|
EXTERNAL SELECT
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
|
|
$ WANTSE, WANTSN, WANTST, WANTSV, WANTVS
|
|
INTEGER HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
|
|
$ IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
|
|
$ MAXWRK, MINWRK
|
|
DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SMLNUM
|
|
* ..
|
|
* .. Local Arrays ..
|
|
DOUBLE PRECISION DUM( 1 )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
|
|
$ DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
DOUBLE PRECISION DLAMCH, DLANGE
|
|
EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
WANTVS = LSAME( JOBVS, 'V' )
|
|
WANTST = LSAME( SORT, 'S' )
|
|
WANTSN = LSAME( SENSE, 'N' )
|
|
WANTSE = LSAME( SENSE, 'E' )
|
|
WANTSV = LSAME( SENSE, 'V' )
|
|
WANTSB = LSAME( SENSE, 'B' )
|
|
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
|
|
*
|
|
IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
|
|
$ ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
|
|
INFO = -12
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
* (Note: Comments in the code beginning "RWorkspace:" describe the
|
|
* minimal amount of real workspace needed at that point in the
|
|
* code, as well as the preferred amount for good performance.
|
|
* IWorkspace refers to integer workspace.
|
|
* NB refers to the optimal block size for the immediately
|
|
* following subroutine, as returned by ILAENV.
|
|
* HSWORK refers to the workspace preferred by DHSEQR, as
|
|
* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
|
|
* the worst case.
|
|
* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
|
|
* depends on SDIM, which is computed by the routine DTRSEN later
|
|
* in the code.)
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
LIWRK = 1
|
|
IF( N.EQ.0 ) THEN
|
|
MINWRK = 1
|
|
LWRK = 1
|
|
ELSE
|
|
MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
|
|
MINWRK = 3*N
|
|
*
|
|
CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
|
|
$ WORK, -1, IEVAL )
|
|
HSWORK = INT( WORK( 1 ) )
|
|
*
|
|
IF( .NOT.WANTVS ) THEN
|
|
MAXWRK = MAX( MAXWRK, N + HSWORK )
|
|
ELSE
|
|
MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
|
|
$ 'DORGHR', ' ', N, 1, N, -1 ) )
|
|
MAXWRK = MAX( MAXWRK, N + HSWORK )
|
|
END IF
|
|
LWRK = MAXWRK
|
|
IF( .NOT.WANTSN )
|
|
$ LWRK = MAX( LWRK, N + ( N*N )/2 )
|
|
IF( WANTSV .OR. WANTSB )
|
|
$ LIWRK = ( N*N )/4
|
|
END IF
|
|
IWORK( 1 ) = LIWRK
|
|
WORK( 1 ) = LWRK
|
|
*
|
|
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
|
|
INFO = -16
|
|
ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
|
|
INFO = -18
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DGEESX', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
SDIM = 0
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Get machine constants
|
|
*
|
|
EPS = DLAMCH( 'P' )
|
|
SMLNUM = DLAMCH( 'S' )
|
|
BIGNUM = ONE / SMLNUM
|
|
SMLNUM = SQRT( SMLNUM ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
|
|
SCALEA = .FALSE.
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
|
SCALEA = .TRUE.
|
|
CSCALE = SMLNUM
|
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
|
SCALEA = .TRUE.
|
|
CSCALE = BIGNUM
|
|
END IF
|
|
IF( SCALEA )
|
|
$ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
|
|
*
|
|
* Permute the matrix to make it more nearly triangular
|
|
* (RWorkspace: need N)
|
|
*
|
|
IBAL = 1
|
|
CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
|
|
*
|
|
* Reduce to upper Hessenberg form
|
|
* (RWorkspace: need 3*N, prefer 2*N+N*NB)
|
|
*
|
|
ITAU = N + IBAL
|
|
IWRK = N + ITAU
|
|
CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
|
|
$ LWORK-IWRK+1, IERR )
|
|
*
|
|
IF( WANTVS ) THEN
|
|
*
|
|
* Copy Householder vectors to VS
|
|
*
|
|
CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
|
|
*
|
|
* Generate orthogonal matrix in VS
|
|
* (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
|
|
*
|
|
CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
|
|
$ LWORK-IWRK+1, IERR )
|
|
END IF
|
|
*
|
|
SDIM = 0
|
|
*
|
|
* Perform QR iteration, accumulating Schur vectors in VS if desired
|
|
* (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
|
|
*
|
|
IWRK = ITAU
|
|
CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
|
|
$ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
|
|
IF( IEVAL.GT.0 )
|
|
$ INFO = IEVAL
|
|
*
|
|
* Sort eigenvalues if desired
|
|
*
|
|
IF( WANTST .AND. INFO.EQ.0 ) THEN
|
|
IF( SCALEA ) THEN
|
|
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
|
|
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
|
|
END IF
|
|
DO 10 I = 1, N
|
|
BWORK( I ) = SELECT( WR( I ), WI( I ) )
|
|
10 CONTINUE
|
|
*
|
|
* Reorder eigenvalues, transform Schur vectors, and compute
|
|
* reciprocal condition numbers
|
|
* (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
|
|
* otherwise, need N )
|
|
* (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
|
|
* otherwise, need 0 )
|
|
*
|
|
CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
|
|
$ SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
|
|
$ IWORK, LIWORK, ICOND )
|
|
IF( .NOT.WANTSN )
|
|
$ MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
|
|
IF( ICOND.EQ.-15 ) THEN
|
|
*
|
|
* Not enough real workspace
|
|
*
|
|
INFO = -16
|
|
ELSE IF( ICOND.EQ.-17 ) THEN
|
|
*
|
|
* Not enough integer workspace
|
|
*
|
|
INFO = -18
|
|
ELSE IF( ICOND.GT.0 ) THEN
|
|
*
|
|
* DTRSEN failed to reorder or to restore standard Schur form
|
|
*
|
|
INFO = ICOND + N
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( WANTVS ) THEN
|
|
*
|
|
* Undo balancing
|
|
* (RWorkspace: need N)
|
|
*
|
|
CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
|
|
$ IERR )
|
|
END IF
|
|
*
|
|
IF( SCALEA ) THEN
|
|
*
|
|
* Undo scaling for the Schur form of A
|
|
*
|
|
CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
|
|
CALL DCOPY( N, A, LDA+1, WR, 1 )
|
|
IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
|
|
DUM( 1 ) = RCONDV
|
|
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
|
|
RCONDV = DUM( 1 )
|
|
END IF
|
|
IF( CSCALE.EQ.SMLNUM ) THEN
|
|
*
|
|
* If scaling back towards underflow, adjust WI if an
|
|
* offdiagonal element of a 2-by-2 block in the Schur form
|
|
* underflows.
|
|
*
|
|
IF( IEVAL.GT.0 ) THEN
|
|
I1 = IEVAL + 1
|
|
I2 = IHI - 1
|
|
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
|
|
$ IERR )
|
|
ELSE IF( WANTST ) THEN
|
|
I1 = 1
|
|
I2 = N - 1
|
|
ELSE
|
|
I1 = ILO
|
|
I2 = IHI - 1
|
|
END IF
|
|
INXT = I1 - 1
|
|
DO 20 I = I1, I2
|
|
IF( I.LT.INXT )
|
|
$ GO TO 20
|
|
IF( WI( I ).EQ.ZERO ) THEN
|
|
INXT = I + 1
|
|
ELSE
|
|
IF( A( I+1, I ).EQ.ZERO ) THEN
|
|
WI( I ) = ZERO
|
|
WI( I+1 ) = ZERO
|
|
ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
|
|
$ ZERO ) THEN
|
|
WI( I ) = ZERO
|
|
WI( I+1 ) = ZERO
|
|
IF( I.GT.1 )
|
|
$ CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
|
|
IF( N.GT.I+1 )
|
|
$ CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
|
|
$ A( I+1, I+2 ), LDA )
|
|
IF( WANTVS ) THEN
|
|
CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
|
|
END IF
|
|
A( I, I+1 ) = A( I+1, I )
|
|
A( I+1, I ) = ZERO
|
|
END IF
|
|
INXT = I + 2
|
|
END IF
|
|
20 CONTINUE
|
|
END IF
|
|
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
|
|
$ WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
|
|
END IF
|
|
*
|
|
IF( WANTST .AND. INFO.EQ.0 ) THEN
|
|
*
|
|
* Check if reordering successful
|
|
*
|
|
LASTSL = .TRUE.
|
|
LST2SL = .TRUE.
|
|
SDIM = 0
|
|
IP = 0
|
|
DO 30 I = 1, N
|
|
CURSL = SELECT( WR( I ), WI( I ) )
|
|
IF( WI( I ).EQ.ZERO ) THEN
|
|
IF( CURSL )
|
|
$ SDIM = SDIM + 1
|
|
IP = 0
|
|
IF( CURSL .AND. .NOT.LASTSL )
|
|
$ INFO = N + 2
|
|
ELSE
|
|
IF( IP.EQ.1 ) THEN
|
|
*
|
|
* Last eigenvalue of conjugate pair
|
|
*
|
|
CURSL = CURSL .OR. LASTSL
|
|
LASTSL = CURSL
|
|
IF( CURSL )
|
|
$ SDIM = SDIM + 2
|
|
IP = -1
|
|
IF( CURSL .AND. .NOT.LST2SL )
|
|
$ INFO = N + 2
|
|
ELSE
|
|
*
|
|
* First eigenvalue of conjugate pair
|
|
*
|
|
IP = 1
|
|
END IF
|
|
END IF
|
|
LST2SL = LASTSL
|
|
LASTSL = CURSL
|
|
30 CONTINUE
|
|
END IF
|
|
*
|
|
WORK( 1 ) = MAXWRK
|
|
IF( WANTSV .OR. WANTSB ) THEN
|
|
IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
|
|
ELSE
|
|
IWORK( 1 ) = 1
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DGEESX
|
|
*
|
|
END
|
|
|