Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

489 lines
14 KiB

*> \brief \b DGETSLS
*
* Definition:
* ===========
*
* SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
* $ WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGETSLS solves overdetermined or underdetermined real linear systems
*> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
*> factorization of A. It is assumed that A has full rank.
*>
*>
*>
*> The following options are provided:
*>
*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A*X ||.
*>
*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
*> an underdetermined system A * X = B.
*>
*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
*> an undetermined system A**T * X = B.
*>
*> 4. If TRANS = 'T' and m < n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A**T * X ||.
*>
*> Several right hand side vectors b and solution vectors x can be
*> handled in a single call; they are stored as the columns of the
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
*> matrix X.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': the linear system involves A;
*> = 'T': the linear system involves A**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of
*> columns of the matrices B and X. NRHS >=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
*> A is overwritten by details of its QR or LQ
*> factorization as returned by DGEQR or DGELQ.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the matrix B of right hand side vectors, stored
*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
*> if TRANS = 'T'.
*> On exit, if INFO = 0, B is overwritten by the solution
*> vectors, stored columnwise:
*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
*> squares solution vectors.
*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
*> least squares solution vectors.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= MAX(1,M,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
*> or optimal, if query was assumed) LWORK.
*> See LWORK for details.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If LWORK = -1 or -2, then a workspace query is assumed.
*> If LWORK = -1, the routine calculates optimal size of WORK for the
*> optimal performance and returns this value in WORK(1).
*> If LWORK = -2, the routine calculates minimal size of WORK and
*> returns this value in WORK(1).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element of the
*> triangular factor of A is zero, so that A does not have
*> full rank; the least squares solution could not be
*> computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleGEsolve
*
* =====================================================================
SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
$ WORK, LWORK, INFO )
*
* -- LAPACK driver routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
*
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, TRAN
INTEGER I, IASCL, IBSCL, J, MAXMN, BROW,
$ SCLLEN, TSZO, TSZM, LWO, LWM, LW1, LW2,
$ WSIZEO, WSIZEM, INFO2
DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM, TQ( 5 ), WORKQ( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL LSAME, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGEQR, DGEMQR, DLASCL, DLASET,
$ DTRTRS, XERBLA, DGELQ, DGEMLQ
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, INT
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
MAXMN = MAX( M, N )
TRAN = LSAME( TRANS, 'T' )
*
LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
$ LSAME( TRANS, 'T' ) ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -8
END IF
*
IF( INFO.EQ.0 ) THEN
*
* Determine the optimum and minimum LWORK
*
IF( M.GE.N ) THEN
CALL DGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
TSZO = INT( TQ( 1 ) )
LWO = INT( WORKQ( 1 ) )
CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
$ TSZO, B, LDB, WORKQ, -1, INFO2 )
LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
CALL DGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
TSZM = INT( TQ( 1 ) )
LWM = INT( WORKQ( 1 ) )
CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
$ TSZM, B, LDB, WORKQ, -1, INFO2 )
LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
WSIZEO = TSZO + LWO
WSIZEM = TSZM + LWM
ELSE
CALL DGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
TSZO = INT( TQ( 1 ) )
LWO = INT( WORKQ( 1 ) )
CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
$ TSZO, B, LDB, WORKQ, -1, INFO2 )
LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
CALL DGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
TSZM = INT( TQ( 1 ) )
LWM = INT( WORKQ( 1 ) )
CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
$ TSZM, B, LDB, WORKQ, -1, INFO2 )
LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
WSIZEO = TSZO + LWO
WSIZEM = TSZM + LWM
END IF
*
IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
INFO = -10
END IF
*
WORK( 1 ) = DBLE( WSIZEO )
*
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGETSLS', -INFO )
RETURN
END IF
IF( LQUERY ) THEN
IF( LWORK.EQ.-2 ) WORK( 1 ) = DBLE( WSIZEM )
RETURN
END IF
IF( LWORK.LT.WSIZEO ) THEN
LW1 = TSZM
LW2 = LWM
ELSE
LW1 = TSZO
LW2 = LWO
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
CALL DLASET( 'FULL', MAX( M, N ), NRHS, ZERO, ZERO,
$ B, LDB )
RETURN
END IF
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
*
* Scale A, B if max element outside range [SMLNUM,BIGNUM]
*
ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL DLASET( 'F', MAXMN, NRHS, ZERO, ZERO, B, LDB )
GO TO 50
END IF
*
BROW = M
IF ( TRAN ) THEN
BROW = N
END IF
BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, WORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 2
END IF
*
IF ( M.GE.N ) THEN
*
* compute QR factorization of A
*
CALL DGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
$ WORK( 1 ), LW2, INFO )
IF ( .NOT.TRAN ) THEN
*
* Least-Squares Problem min || A * X - B ||
*
* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
*
CALL DGEMQR( 'L' , 'T', M, NRHS, N, A, LDA,
$ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
$ INFO )
*
* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
*
CALL DTRTRS( 'U', 'N', 'N', N, NRHS,
$ A, LDA, B, LDB, INFO )
IF( INFO.GT.0 ) THEN
RETURN
END IF
SCLLEN = N
ELSE
*
* Overdetermined system of equations A**T * X = B
*
* B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
*
CALL DTRTRS( 'U', 'T', 'N', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* B(N+1:M,1:NRHS) = ZERO
*
DO 20 J = 1, NRHS
DO 10 I = N + 1, M
B( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
*
CALL DGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
$ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
$ INFO )
*
SCLLEN = M
*
END IF
*
ELSE
*
* Compute LQ factorization of A
*
CALL DGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
$ WORK( 1 ), LW2, INFO )
*
* workspace at least M, optimally M*NB.
*
IF( .NOT.TRAN ) THEN
*
* underdetermined system of equations A * X = B
*
* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
*
CALL DTRTRS( 'L', 'N', 'N', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* B(M+1:N,1:NRHS) = 0
*
DO 40 J = 1, NRHS
DO 30 I = M + 1, N
B( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
*
* B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
*
CALL DGEMLQ( 'L', 'T', N, NRHS, M, A, LDA,
$ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
$ INFO )
*
* workspace at least NRHS, optimally NRHS*NB
*
SCLLEN = N
*
ELSE
*
* overdetermined system min || A**T * X - B ||
*
* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
*
CALL DGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
$ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
$ INFO )
*
* workspace at least NRHS, optimally NRHS*NB
*
* B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
*
CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = M
*
END IF
*
END IF
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
*
50 CONTINUE
WORK( 1 ) = DBLE( TSZO + LWO )
RETURN
*
* End of DGETSLS
*
END