You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
414 lines
12 KiB
414 lines
12 KiB
*> \brief \b DLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLA_SYAMV + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syamv.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syamv.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syamv.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
|
|
* INCY )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* DOUBLE PRECISION ALPHA, BETA
|
|
* INTEGER INCX, INCY, LDA, N, UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLA_SYAMV performs the matrix-vector operation
|
|
*>
|
|
*> y := alpha*abs(A)*abs(x) + beta*abs(y),
|
|
*>
|
|
*> where alpha and beta are scalars, x and y are vectors and A is an
|
|
*> n by n symmetric matrix.
|
|
*>
|
|
*> This function is primarily used in calculating error bounds.
|
|
*> To protect against underflow during evaluation, components in
|
|
*> the resulting vector are perturbed away from zero by (N+1)
|
|
*> times the underflow threshold. To prevent unnecessarily large
|
|
*> errors for block-structure embedded in general matrices,
|
|
*> "symbolically" zero components are not perturbed. A zero
|
|
*> entry is considered "symbolic" if all multiplications involved
|
|
*> in computing that entry have at least one zero multiplicand.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is INTEGER
|
|
*> On entry, UPLO specifies whether the upper or lower
|
|
*> triangular part of the array A is to be referenced as
|
|
*> follows:
|
|
*>
|
|
*> UPLO = BLAS_UPPER Only the upper triangular part of A
|
|
*> is to be referenced.
|
|
*>
|
|
*> UPLO = BLAS_LOWER Only the lower triangular part of A
|
|
*> is to be referenced.
|
|
*>
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, N specifies the number of columns of the matrix A.
|
|
*> N must be at least zero.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is DOUBLE PRECISION .
|
|
*> On entry, ALPHA specifies the scalar alpha.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension ( LDA, n ).
|
|
*> Before entry, the leading m by n part of the array A must
|
|
*> contain the matrix of coefficients.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> On entry, LDA specifies the first dimension of A as declared
|
|
*> in the calling (sub) program. LDA must be at least
|
|
*> max( 1, n ).
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] X
|
|
*> \verbatim
|
|
*> X is DOUBLE PRECISION array, dimension
|
|
*> ( 1 + ( n - 1 )*abs( INCX ) )
|
|
*> Before entry, the incremented array X must contain the
|
|
*> vector x.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCX
|
|
*> \verbatim
|
|
*> INCX is INTEGER
|
|
*> On entry, INCX specifies the increment for the elements of
|
|
*> X. INCX must not be zero.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] BETA
|
|
*> \verbatim
|
|
*> BETA is DOUBLE PRECISION .
|
|
*> On entry, BETA specifies the scalar beta. When BETA is
|
|
*> supplied as zero then Y need not be set on input.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Y
|
|
*> \verbatim
|
|
*> Y is DOUBLE PRECISION array, dimension
|
|
*> ( 1 + ( n - 1 )*abs( INCY ) )
|
|
*> Before entry with BETA non-zero, the incremented array Y
|
|
*> must contain the vector y. On exit, Y is overwritten by the
|
|
*> updated vector y.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCY
|
|
*> \verbatim
|
|
*> INCY is INTEGER
|
|
*> On entry, INCY specifies the increment for the elements of
|
|
*> Y. INCY must not be zero.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleSYcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Level 2 Blas routine.
|
|
*>
|
|
*> -- Written on 22-October-1986.
|
|
*> Jack Dongarra, Argonne National Lab.
|
|
*> Jeremy Du Croz, Nag Central Office.
|
|
*> Sven Hammarling, Nag Central Office.
|
|
*> Richard Hanson, Sandia National Labs.
|
|
*> -- Modified for the absolute-value product, April 2006
|
|
*> Jason Riedy, UC Berkeley
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
|
|
$ INCY )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
DOUBLE PRECISION ALPHA, BETA
|
|
INTEGER INCX, INCY, LDA, N, UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL SYMB_ZERO
|
|
DOUBLE PRECISION TEMP, SAFE1
|
|
INTEGER I, INFO, IY, J, JX, KX, KY
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, DLAMCH
|
|
DOUBLE PRECISION DLAMCH
|
|
* ..
|
|
* .. External Functions ..
|
|
EXTERNAL ILAUPLO
|
|
INTEGER ILAUPLO
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, ABS, SIGN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF ( UPLO.NE.ILAUPLO( 'U' ) .AND.
|
|
$ UPLO.NE.ILAUPLO( 'L' ) ) THEN
|
|
INFO = 1
|
|
ELSE IF( N.LT.0 )THEN
|
|
INFO = 2
|
|
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
|
|
INFO = 5
|
|
ELSE IF( INCX.EQ.0 )THEN
|
|
INFO = 7
|
|
ELSE IF( INCY.EQ.0 )THEN
|
|
INFO = 10
|
|
END IF
|
|
IF( INFO.NE.0 )THEN
|
|
CALL XERBLA( 'DLA_SYAMV', INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
|
|
$ RETURN
|
|
*
|
|
* Set up the start points in X and Y.
|
|
*
|
|
IF( INCX.GT.0 )THEN
|
|
KX = 1
|
|
ELSE
|
|
KX = 1 - ( N - 1 )*INCX
|
|
END IF
|
|
IF( INCY.GT.0 )THEN
|
|
KY = 1
|
|
ELSE
|
|
KY = 1 - ( N - 1 )*INCY
|
|
END IF
|
|
*
|
|
* Set SAFE1 essentially to be the underflow threshold times the
|
|
* number of additions in each row.
|
|
*
|
|
SAFE1 = DLAMCH( 'Safe minimum' )
|
|
SAFE1 = (N+1)*SAFE1
|
|
*
|
|
* Form y := alpha*abs(A)*abs(x) + beta*abs(y).
|
|
*
|
|
* The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
|
|
* the inexact flag. Still doesn't help change the iteration order
|
|
* to per-column.
|
|
*
|
|
IY = KY
|
|
IF ( INCX.EQ.1 ) THEN
|
|
IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
|
|
DO I = 1, N
|
|
IF ( BETA .EQ. ZERO ) THEN
|
|
SYMB_ZERO = .TRUE.
|
|
Y( IY ) = 0.0D+0
|
|
ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
|
|
SYMB_ZERO = .TRUE.
|
|
ELSE
|
|
SYMB_ZERO = .FALSE.
|
|
Y( IY ) = BETA * ABS( Y( IY ) )
|
|
END IF
|
|
IF ( ALPHA .NE. ZERO ) THEN
|
|
DO J = 1, I
|
|
TEMP = ABS( A( J, I ) )
|
|
SYMB_ZERO = SYMB_ZERO .AND.
|
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
|
|
|
Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
|
|
END DO
|
|
DO J = I+1, N
|
|
TEMP = ABS( A( I, J ) )
|
|
SYMB_ZERO = SYMB_ZERO .AND.
|
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
|
|
|
Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
|
|
END DO
|
|
END IF
|
|
|
|
IF ( .NOT.SYMB_ZERO )
|
|
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
|
|
|
|
IY = IY + INCY
|
|
END DO
|
|
ELSE
|
|
DO I = 1, N
|
|
IF ( BETA .EQ. ZERO ) THEN
|
|
SYMB_ZERO = .TRUE.
|
|
Y( IY ) = 0.0D+0
|
|
ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
|
|
SYMB_ZERO = .TRUE.
|
|
ELSE
|
|
SYMB_ZERO = .FALSE.
|
|
Y( IY ) = BETA * ABS( Y( IY ) )
|
|
END IF
|
|
IF ( ALPHA .NE. ZERO ) THEN
|
|
DO J = 1, I
|
|
TEMP = ABS( A( I, J ) )
|
|
SYMB_ZERO = SYMB_ZERO .AND.
|
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
|
|
|
Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
|
|
END DO
|
|
DO J = I+1, N
|
|
TEMP = ABS( A( J, I ) )
|
|
SYMB_ZERO = SYMB_ZERO .AND.
|
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
|
|
|
Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
|
|
END DO
|
|
END IF
|
|
|
|
IF ( .NOT.SYMB_ZERO )
|
|
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
|
|
|
|
IY = IY + INCY
|
|
END DO
|
|
END IF
|
|
ELSE
|
|
IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
|
|
DO I = 1, N
|
|
IF ( BETA .EQ. ZERO ) THEN
|
|
SYMB_ZERO = .TRUE.
|
|
Y( IY ) = 0.0D+0
|
|
ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
|
|
SYMB_ZERO = .TRUE.
|
|
ELSE
|
|
SYMB_ZERO = .FALSE.
|
|
Y( IY ) = BETA * ABS( Y( IY ) )
|
|
END IF
|
|
JX = KX
|
|
IF ( ALPHA .NE. ZERO ) THEN
|
|
DO J = 1, I
|
|
TEMP = ABS( A( J, I ) )
|
|
SYMB_ZERO = SYMB_ZERO .AND.
|
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
|
|
|
Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
|
|
JX = JX + INCX
|
|
END DO
|
|
DO J = I+1, N
|
|
TEMP = ABS( A( I, J ) )
|
|
SYMB_ZERO = SYMB_ZERO .AND.
|
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
|
|
|
Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
|
|
JX = JX + INCX
|
|
END DO
|
|
END IF
|
|
|
|
IF ( .NOT.SYMB_ZERO )
|
|
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
|
|
|
|
IY = IY + INCY
|
|
END DO
|
|
ELSE
|
|
DO I = 1, N
|
|
IF ( BETA .EQ. ZERO ) THEN
|
|
SYMB_ZERO = .TRUE.
|
|
Y( IY ) = 0.0D+0
|
|
ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
|
|
SYMB_ZERO = .TRUE.
|
|
ELSE
|
|
SYMB_ZERO = .FALSE.
|
|
Y( IY ) = BETA * ABS( Y( IY ) )
|
|
END IF
|
|
JX = KX
|
|
IF ( ALPHA .NE. ZERO ) THEN
|
|
DO J = 1, I
|
|
TEMP = ABS( A( I, J ) )
|
|
SYMB_ZERO = SYMB_ZERO .AND.
|
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
|
|
|
Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
|
|
JX = JX + INCX
|
|
END DO
|
|
DO J = I+1, N
|
|
TEMP = ABS( A( J, I ) )
|
|
SYMB_ZERO = SYMB_ZERO .AND.
|
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
|
|
|
Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
|
|
JX = JX + INCX
|
|
END DO
|
|
END IF
|
|
|
|
IF ( .NOT.SYMB_ZERO )
|
|
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
|
|
|
|
IY = IY + INCY
|
|
END DO
|
|
END IF
|
|
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DLA_SYAMV
|
|
*
|
|
END
|
|
|