You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
376 lines
12 KiB
376 lines
12 KiB
*> \brief \b DLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAG2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlag2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlag2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlag2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
|
|
* WR2, WI )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDA, LDB
|
|
* DOUBLE PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
|
|
*> problem A - w B, with scaling as necessary to avoid over-/underflow.
|
|
*>
|
|
*> The scaling factor "s" results in a modified eigenvalue equation
|
|
*>
|
|
*> s A - w B
|
|
*>
|
|
*> where s is a non-negative scaling factor chosen so that w, w B,
|
|
*> and s A do not overflow and, if possible, do not underflow, either.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA, 2)
|
|
*> On entry, the 2 x 2 matrix A. It is assumed that its 1-norm
|
|
*> is less than 1/SAFMIN. Entries less than
|
|
*> sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= 2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB, 2)
|
|
*> On entry, the 2 x 2 upper triangular matrix B. It is
|
|
*> assumed that the one-norm of B is less than 1/SAFMIN. The
|
|
*> diagonals should be at least sqrt(SAFMIN) times the largest
|
|
*> element of B (in absolute value); if a diagonal is smaller
|
|
*> than that, then +/- sqrt(SAFMIN) will be used instead of
|
|
*> that diagonal.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= 2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SAFMIN
|
|
*> \verbatim
|
|
*> SAFMIN is DOUBLE PRECISION
|
|
*> The smallest positive number s.t. 1/SAFMIN does not
|
|
*> overflow. (This should always be DLAMCH('S') -- it is an
|
|
*> argument in order to avoid having to call DLAMCH frequently.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCALE1
|
|
*> \verbatim
|
|
*> SCALE1 is DOUBLE PRECISION
|
|
*> A scaling factor used to avoid over-/underflow in the
|
|
*> eigenvalue equation which defines the first eigenvalue. If
|
|
*> the eigenvalues are complex, then the eigenvalues are
|
|
*> ( WR1 +/- WI i ) / SCALE1 (which may lie outside the
|
|
*> exponent range of the machine), SCALE1=SCALE2, and SCALE1
|
|
*> will always be positive. If the eigenvalues are real, then
|
|
*> the first (real) eigenvalue is WR1 / SCALE1 , but this may
|
|
*> overflow or underflow, and in fact, SCALE1 may be zero or
|
|
*> less than the underflow threshold if the exact eigenvalue
|
|
*> is sufficiently large.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCALE2
|
|
*> \verbatim
|
|
*> SCALE2 is DOUBLE PRECISION
|
|
*> A scaling factor used to avoid over-/underflow in the
|
|
*> eigenvalue equation which defines the second eigenvalue. If
|
|
*> the eigenvalues are complex, then SCALE2=SCALE1. If the
|
|
*> eigenvalues are real, then the second (real) eigenvalue is
|
|
*> WR2 / SCALE2 , but this may overflow or underflow, and in
|
|
*> fact, SCALE2 may be zero or less than the underflow
|
|
*> threshold if the exact eigenvalue is sufficiently large.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WR1
|
|
*> \verbatim
|
|
*> WR1 is DOUBLE PRECISION
|
|
*> If the eigenvalue is real, then WR1 is SCALE1 times the
|
|
*> eigenvalue closest to the (2,2) element of A B**(-1). If the
|
|
*> eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
|
|
*> part of the eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WR2
|
|
*> \verbatim
|
|
*> WR2 is DOUBLE PRECISION
|
|
*> If the eigenvalue is real, then WR2 is SCALE2 times the
|
|
*> other eigenvalue. If the eigenvalue is complex, then
|
|
*> WR1=WR2 is SCALE1 times the real part of the eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WI
|
|
*> \verbatim
|
|
*> WI is DOUBLE PRECISION
|
|
*> If the eigenvalue is real, then WI is zero. If the
|
|
*> eigenvalue is complex, then WI is SCALE1 times the imaginary
|
|
*> part of the eigenvalues. WI will always be non-negative.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
|
|
$ WR2, WI )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDA, LDB
|
|
DOUBLE PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE, TWO
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
|
|
DOUBLE PRECISION HALF
|
|
PARAMETER ( HALF = ONE / TWO )
|
|
DOUBLE PRECISION FUZZY1
|
|
PARAMETER ( FUZZY1 = ONE+1.0D-5 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
|
|
$ AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
|
|
$ BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
|
|
$ DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
|
|
$ SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
|
|
$ WSCALE, WSIZE, WSMALL
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, SIGN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
RTMIN = SQRT( SAFMIN )
|
|
RTMAX = ONE / RTMIN
|
|
SAFMAX = ONE / SAFMIN
|
|
*
|
|
* Scale A
|
|
*
|
|
ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
|
|
$ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
|
|
ASCALE = ONE / ANORM
|
|
A11 = ASCALE*A( 1, 1 )
|
|
A21 = ASCALE*A( 2, 1 )
|
|
A12 = ASCALE*A( 1, 2 )
|
|
A22 = ASCALE*A( 2, 2 )
|
|
*
|
|
* Perturb B if necessary to insure non-singularity
|
|
*
|
|
B11 = B( 1, 1 )
|
|
B12 = B( 1, 2 )
|
|
B22 = B( 2, 2 )
|
|
BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
|
|
IF( ABS( B11 ).LT.BMIN )
|
|
$ B11 = SIGN( BMIN, B11 )
|
|
IF( ABS( B22 ).LT.BMIN )
|
|
$ B22 = SIGN( BMIN, B22 )
|
|
*
|
|
* Scale B
|
|
*
|
|
BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
|
|
BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
|
|
BSCALE = ONE / BSIZE
|
|
B11 = B11*BSCALE
|
|
B12 = B12*BSCALE
|
|
B22 = B22*BSCALE
|
|
*
|
|
* Compute larger eigenvalue by method described by C. van Loan
|
|
*
|
|
* ( AS is A shifted by -SHIFT*B )
|
|
*
|
|
BINV11 = ONE / B11
|
|
BINV22 = ONE / B22
|
|
S1 = A11*BINV11
|
|
S2 = A22*BINV22
|
|
IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
|
|
AS12 = A12 - S1*B12
|
|
AS22 = A22 - S1*B22
|
|
SS = A21*( BINV11*BINV22 )
|
|
ABI22 = AS22*BINV22 - SS*B12
|
|
PP = HALF*ABI22
|
|
SHIFT = S1
|
|
ELSE
|
|
AS12 = A12 - S2*B12
|
|
AS11 = A11 - S2*B11
|
|
SS = A21*( BINV11*BINV22 )
|
|
ABI22 = -SS*B12
|
|
PP = HALF*( AS11*BINV11+ABI22 )
|
|
SHIFT = S2
|
|
END IF
|
|
QQ = SS*AS12
|
|
IF( ABS( PP*RTMIN ).GE.ONE ) THEN
|
|
DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
|
|
R = SQRT( ABS( DISCR ) )*RTMAX
|
|
ELSE
|
|
IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
|
|
DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
|
|
R = SQRT( ABS( DISCR ) )*RTMIN
|
|
ELSE
|
|
DISCR = PP**2 + QQ
|
|
R = SQRT( ABS( DISCR ) )
|
|
END IF
|
|
END IF
|
|
*
|
|
* Note: the test of R in the following IF is to cover the case when
|
|
* DISCR is small and negative and is flushed to zero during
|
|
* the calculation of R. On machines which have a consistent
|
|
* flush-to-zero threshold and handle numbers above that
|
|
* threshold correctly, it would not be necessary.
|
|
*
|
|
IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
|
|
SUM = PP + SIGN( R, PP )
|
|
DIFF = PP - SIGN( R, PP )
|
|
WBIG = SHIFT + SUM
|
|
*
|
|
* Compute smaller eigenvalue
|
|
*
|
|
WSMALL = SHIFT + DIFF
|
|
IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
|
|
WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
|
|
WSMALL = WDET / WBIG
|
|
END IF
|
|
*
|
|
* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
|
|
* for WR1.
|
|
*
|
|
IF( PP.GT.ABI22 ) THEN
|
|
WR1 = MIN( WBIG, WSMALL )
|
|
WR2 = MAX( WBIG, WSMALL )
|
|
ELSE
|
|
WR1 = MAX( WBIG, WSMALL )
|
|
WR2 = MIN( WBIG, WSMALL )
|
|
END IF
|
|
WI = ZERO
|
|
ELSE
|
|
*
|
|
* Complex eigenvalues
|
|
*
|
|
WR1 = SHIFT + PP
|
|
WR2 = WR1
|
|
WI = R
|
|
END IF
|
|
*
|
|
* Further scaling to avoid underflow and overflow in computing
|
|
* SCALE1 and overflow in computing w*B.
|
|
*
|
|
* This scale factor (WSCALE) is bounded from above using C1 and C2,
|
|
* and from below using C3 and C4.
|
|
* C1 implements the condition s A must never overflow.
|
|
* C2 implements the condition w B must never overflow.
|
|
* C3, with C2,
|
|
* implement the condition that s A - w B must never overflow.
|
|
* C4 implements the condition s should not underflow.
|
|
* C5 implements the condition max(s,|w|) should be at least 2.
|
|
*
|
|
C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
|
|
C2 = SAFMIN*MAX( ONE, BNORM )
|
|
C3 = BSIZE*SAFMIN
|
|
IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
|
|
C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
|
|
ELSE
|
|
C4 = ONE
|
|
END IF
|
|
IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
|
|
C5 = MIN( ONE, ASCALE*BSIZE )
|
|
ELSE
|
|
C5 = ONE
|
|
END IF
|
|
*
|
|
* Scale first eigenvalue
|
|
*
|
|
WABS = ABS( WR1 ) + ABS( WI )
|
|
WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
|
|
$ MIN( C4, HALF*MAX( WABS, C5 ) ) )
|
|
IF( WSIZE.NE.ONE ) THEN
|
|
WSCALE = ONE / WSIZE
|
|
IF( WSIZE.GT.ONE ) THEN
|
|
SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
|
|
$ MIN( ASCALE, BSIZE )
|
|
ELSE
|
|
SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
|
|
$ MAX( ASCALE, BSIZE )
|
|
END IF
|
|
WR1 = WR1*WSCALE
|
|
IF( WI.NE.ZERO ) THEN
|
|
WI = WI*WSCALE
|
|
WR2 = WR1
|
|
SCALE2 = SCALE1
|
|
END IF
|
|
ELSE
|
|
SCALE1 = ASCALE*BSIZE
|
|
SCALE2 = SCALE1
|
|
END IF
|
|
*
|
|
* Scale second eigenvalue (if real)
|
|
*
|
|
IF( WI.EQ.ZERO ) THEN
|
|
WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
|
|
$ MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
|
|
IF( WSIZE.NE.ONE ) THEN
|
|
WSCALE = ONE / WSIZE
|
|
IF( WSIZE.GT.ONE ) THEN
|
|
SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
|
|
$ MIN( ASCALE, BSIZE )
|
|
ELSE
|
|
SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
|
|
$ MAX( ASCALE, BSIZE )
|
|
END IF
|
|
WR2 = WR2*WSCALE
|
|
ELSE
|
|
SCALE2 = ASCALE*BSIZE
|
|
END IF
|
|
END IF
|
|
*
|
|
* End of DLAG2
|
|
*
|
|
RETURN
|
|
END
|
|
|