You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
5.0 KiB
194 lines
5.0 KiB
*> \brief \b DLAQZ1
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAQZ1 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqz1.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqz1.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqz1.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2,
|
|
* $ V )
|
|
* IMPLICIT NONE
|
|
*
|
|
* Arguments
|
|
* INTEGER, INTENT( IN ) :: LDA, LDB
|
|
* DOUBLE PRECISION, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1,
|
|
* $ SR2, SI, BETA1, BETA2
|
|
* DOUBLE PRECISION, INTENT( OUT ) :: V( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Given a 3-by-3 matrix pencil (A,B), DLAQZ1 sets v to a
|
|
*> scalar multiple of the first column of the product
|
|
*>
|
|
*> (*) K = (A - (beta2*sr2 - i*si)*B)*B^(-1)*(beta1*A - (sr2 + i*si2)*B)*B^(-1).
|
|
*>
|
|
*> It is assumed that either
|
|
*>
|
|
*> 1) sr1 = sr2
|
|
*> or
|
|
*> 2) si = 0.
|
|
*>
|
|
*> This is useful for starting double implicit shift bulges
|
|
*> in the QZ algorithm.
|
|
*> \endverbatim
|
|
*
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> The 3-by-3 matrix A in (*).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of A as declared in
|
|
*> the calling procedure.
|
|
*> \endverbatim
|
|
*
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,N)
|
|
*> The 3-by-3 matrix B in (*).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of B as declared in
|
|
*> the calling procedure.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SR1
|
|
*> \verbatim
|
|
*> SR1 is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SR2
|
|
*> \verbatim
|
|
*> SR2 is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SI
|
|
*> \verbatim
|
|
*> SI is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] BETA1
|
|
*> \verbatim
|
|
*> BETA1 is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] BETA2
|
|
*> \verbatim
|
|
*> BETA2 is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V
|
|
*> \verbatim
|
|
*> V is DOUBLE PRECISION array, dimension (N)
|
|
*> A scalar multiple of the first column of the
|
|
*> matrix K in (*).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Thijs Steel, KU Leuven
|
|
*
|
|
*> \date May 2020
|
|
*
|
|
*> \ingroup doubleGEcomputational
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2,
|
|
$ V )
|
|
IMPLICIT NONE
|
|
*
|
|
* Arguments
|
|
INTEGER, INTENT( IN ) :: LDA, LDB
|
|
DOUBLE PRECISION, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1,
|
|
$ SR2, SI, BETA1, BETA2
|
|
DOUBLE PRECISION, INTENT( OUT ) :: V( * )
|
|
*
|
|
* Parameters
|
|
DOUBLE PRECISION :: ZERO, ONE, HALF
|
|
PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
|
|
*
|
|
* Local scalars
|
|
DOUBLE PRECISION :: W( 2 ), SAFMIN, SAFMAX, SCALE1, SCALE2
|
|
*
|
|
* External Functions
|
|
DOUBLE PRECISION, EXTERNAL :: DLAMCH
|
|
LOGICAL, EXTERNAL :: DISNAN
|
|
*
|
|
SAFMIN = DLAMCH( 'SAFE MINIMUM' )
|
|
SAFMAX = ONE/SAFMIN
|
|
*
|
|
* Calculate first shifted vector
|
|
*
|
|
W( 1 ) = BETA1*A( 1, 1 )-SR1*B( 1, 1 )
|
|
W( 2 ) = BETA1*A( 2, 1 )-SR1*B( 2, 1 )
|
|
SCALE1 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) )
|
|
IF( SCALE1 .GE. SAFMIN .AND. SCALE1 .LE. SAFMAX ) THEN
|
|
W( 1 ) = W( 1 )/SCALE1
|
|
W( 2 ) = W( 2 )/SCALE1
|
|
END IF
|
|
*
|
|
* Solve linear system
|
|
*
|
|
W( 2 ) = W( 2 )/B( 2, 2 )
|
|
W( 1 ) = ( W( 1 )-B( 1, 2 )*W( 2 ) )/B( 1, 1 )
|
|
SCALE2 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) )
|
|
IF( SCALE2 .GE. SAFMIN .AND. SCALE2 .LE. SAFMAX ) THEN
|
|
W( 1 ) = W( 1 )/SCALE2
|
|
W( 2 ) = W( 2 )/SCALE2
|
|
END IF
|
|
*
|
|
* Apply second shift
|
|
*
|
|
V( 1 ) = BETA2*( A( 1, 1 )*W( 1 )+A( 1, 2 )*W( 2 ) )-SR2*( B( 1,
|
|
$ 1 )*W( 1 )+B( 1, 2 )*W( 2 ) )
|
|
V( 2 ) = BETA2*( A( 2, 1 )*W( 1 )+A( 2, 2 )*W( 2 ) )-SR2*( B( 2,
|
|
$ 1 )*W( 1 )+B( 2, 2 )*W( 2 ) )
|
|
V( 3 ) = BETA2*( A( 3, 1 )*W( 1 )+A( 3, 2 )*W( 2 ) )-SR2*( B( 3,
|
|
$ 1 )*W( 1 )+B( 3, 2 )*W( 2 ) )
|
|
*
|
|
* Account for imaginary part
|
|
*
|
|
V( 1 ) = V( 1 )+SI*SI*B( 1, 1 )/SCALE1/SCALE2
|
|
*
|
|
* Check for overflow
|
|
*
|
|
IF( ABS( V( 1 ) ).GT.SAFMAX .OR. ABS( V( 2 ) ) .GT. SAFMAX .OR.
|
|
$ ABS( V( 3 ) ).GT.SAFMAX .OR. DISNAN( V( 1 ) ) .OR.
|
|
$ DISNAN( V( 2 ) ) .OR. DISNAN( V( 3 ) ) ) THEN
|
|
V( 1 ) = ZERO
|
|
V( 2 ) = ZERO
|
|
V( 3 ) = ZERO
|
|
END IF
|
|
*
|
|
* End of DLAQZ1
|
|
*
|
|
END SUBROUTINE
|
|
|