Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

564 lines
18 KiB

*> \brief \b DLAQZ3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAQZ3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqz3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqz3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqz3.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B,
* $ LDB, Q, LDQ, Z, LDZ, NS, ND, ALPHAR, ALPHAI, BETA, QC, LDQC,
* $ ZC, LDZC, WORK, LWORK, REC, INFO )
* IMPLICIT NONE
*
* Arguments
* LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
* INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
* $ LDQC, LDZC, LWORK, REC
*
* DOUBLE PRECISION, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ),
* $ Q( LDQ, * ), Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * )
* INTEGER, INTENT( OUT ) :: NS, ND, INFO
* DOUBLE PRECISION :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAQZ3 performs AED
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ILSCHUR
*> \verbatim
*> ILSCHUR is LOGICAL
*> Determines whether or not to update the full Schur form
*> \endverbatim
*>
*> \param[in] ILQ
*> \verbatim
*> ILQ is LOGICAL
*> Determines whether or not to update the matrix Q
*> \endverbatim
*>
*> \param[in] ILZ
*> \verbatim
*> ILZ is LOGICAL
*> Determines whether or not to update the matrix Z
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A, B, Q, and Z. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*> ILO and IHI mark the rows and columns of (A,B) which
*> are to be normalized
*> \endverbatim
*>
*> \param[in] NW
*> \verbatim
*> NW is INTEGER
*> The desired size of the deflation window.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA, N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB, N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ, N)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> \endverbatim
*>
*> \param[out] NS
*> \verbatim
*> NS is INTEGER
*> The number of unconverged eigenvalues available to
*> use as shifts.
*> \endverbatim
*>
*> \param[out] ND
*> \verbatim
*> ND is INTEGER
*> The number of converged eigenvalues found.
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*> ALPHAR is DOUBLE PRECISION array, dimension (N)
*> The real parts of each scalar alpha defining an eigenvalue
*> of GNEP.
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*> ALPHAI is DOUBLE PRECISION array, dimension (N)
*> The imaginary parts of each scalar alpha defining an
*> eigenvalue of GNEP.
*> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
*> positive, then the j-th and (j+1)-st eigenvalues are a
*> complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION array, dimension (N)
*> The scalars beta that define the eigenvalues of GNEP.
*> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
*> beta = BETA(j) represent the j-th eigenvalue of the matrix
*> pair (A,B), in one of the forms lambda = alpha/beta or
*> mu = beta/alpha. Since either lambda or mu may overflow,
*> they should not, in general, be computed.
*> \endverbatim
*>
*> \param[in,out] QC
*> \verbatim
*> QC is DOUBLE PRECISION array, dimension (LDQC, NW)
*> \endverbatim
*>
*> \param[in] LDQC
*> \verbatim
*> LDQC is INTEGER
*> \endverbatim
*>
*> \param[in,out] ZC
*> \verbatim
*> ZC is DOUBLE PRECISION array, dimension (LDZC, NW)
*> \endverbatim
*>
*> \param[in] LDZC
*> \verbatim
*> LDZ is INTEGER
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[in] REC
*> \verbatim
*> REC is INTEGER
*> REC indicates the current recursion level. Should be set
*> to 0 on first call.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Thijs Steel, KU Leuven
*
*> \date May 2020
*
*> \ingroup doubleGEcomputational
*>
* =====================================================================
RECURSIVE SUBROUTINE DLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW,
$ A, LDA, B, LDB, Q, LDQ, Z, LDZ, NS,
$ ND, ALPHAR, ALPHAI, BETA, QC, LDQC,
$ ZC, LDZC, WORK, LWORK, REC, INFO )
IMPLICIT NONE
* Arguments
LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
$ LDQC, LDZC, LWORK, REC
DOUBLE PRECISION, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ),
$ Q( LDQ, * ), Z( LDZ, * ), ALPHAR( * ),
$ ALPHAI( * ), BETA( * )
INTEGER, INTENT( OUT ) :: NS, ND, INFO
DOUBLE PRECISION :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
* Parameters
DOUBLE PRECISION :: ZERO, ONE, HALF
PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
* Local Scalars
LOGICAL :: BULGE
INTEGER :: JW, KWTOP, KWBOT, ISTOPM, ISTARTM, K, K2, DTGEXC_INFO,
$ IFST, ILST, LWORKREQ, QZ_SMALL_INFO
DOUBLE PRECISION :: S, SMLNUM, ULP, SAFMIN, SAFMAX, C1, S1, TEMP
* External Functions
EXTERNAL :: XERBLA, DTGEXC, DLAQZ0, DLACPY, DLASET,
$ DLAQZ2, DROT, DLARTG, DLAG2, DGEMM
DOUBLE PRECISION, EXTERNAL :: DLAMCH
INFO = 0
* Set up deflation window
JW = MIN( NW, IHI-ILO+1 )
KWTOP = IHI-JW+1
IF ( KWTOP .EQ. ILO ) THEN
S = ZERO
ELSE
S = A( KWTOP, KWTOP-1 )
END IF
* Determine required workspace
IFST = 1
ILST = JW
CALL DTGEXC( .TRUE., .TRUE., JW, A, LDA, B, LDB, QC, LDQC, ZC,
$ LDZC, IFST, ILST, WORK, -1, DTGEXC_INFO )
LWORKREQ = INT( WORK( 1 ) )
CALL DLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
$ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC,
$ LDQC, ZC, LDZC, WORK, -1, REC+1, QZ_SMALL_INFO )
LWORKREQ = MAX( LWORKREQ, INT( WORK( 1 ) )+2*JW**2 )
LWORKREQ = MAX( LWORKREQ, N*NW, 2*NW**2+N )
IF ( LWORK .EQ.-1 ) THEN
* workspace query, quick return
WORK( 1 ) = LWORKREQ
RETURN
ELSE IF ( LWORK .LT. LWORKREQ ) THEN
INFO = -26
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLAQZ3', -INFO )
RETURN
END IF
* Get machine constants
SAFMIN = DLAMCH( 'SAFE MINIMUM' )
SAFMAX = ONE/SAFMIN
ULP = DLAMCH( 'PRECISION' )
SMLNUM = SAFMIN*( DBLE( N )/ULP )
IF ( IHI .EQ. KWTOP ) THEN
* 1 by 1 deflation window, just try a regular deflation
ALPHAR( KWTOP ) = A( KWTOP, KWTOP )
ALPHAI( KWTOP ) = ZERO
BETA( KWTOP ) = B( KWTOP, KWTOP )
NS = 1
ND = 0
IF ( ABS( S ) .LE. MAX( SMLNUM, ULP*ABS( A( KWTOP,
$ KWTOP ) ) ) ) THEN
NS = 0
ND = 1
IF ( KWTOP .GT. ILO ) THEN
A( KWTOP, KWTOP-1 ) = ZERO
END IF
END IF
END IF
* Store window in case of convergence failure
CALL DLACPY( 'ALL', JW, JW, A( KWTOP, KWTOP ), LDA, WORK, JW )
CALL DLACPY( 'ALL', JW, JW, B( KWTOP, KWTOP ), LDB, WORK( JW**2+
$ 1 ), JW )
* Transform window to real schur form
CALL DLASET( 'FULL', JW, JW, ZERO, ONE, QC, LDQC )
CALL DLASET( 'FULL', JW, JW, ZERO, ONE, ZC, LDZC )
CALL DLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
$ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC,
$ LDQC, ZC, LDZC, WORK( 2*JW**2+1 ), LWORK-2*JW**2,
$ REC+1, QZ_SMALL_INFO )
IF( QZ_SMALL_INFO .NE. 0 ) THEN
* Convergence failure, restore the window and exit
ND = 0
NS = JW-QZ_SMALL_INFO
CALL DLACPY( 'ALL', JW, JW, WORK, JW, A( KWTOP, KWTOP ), LDA )
CALL DLACPY( 'ALL', JW, JW, WORK( JW**2+1 ), JW, B( KWTOP,
$ KWTOP ), LDB )
RETURN
END IF
* Deflation detection loop
IF ( KWTOP .EQ. ILO .OR. S .EQ. ZERO ) THEN
KWBOT = KWTOP-1
ELSE
KWBOT = IHI
K = 1
K2 = 1
DO WHILE ( K .LE. JW )
BULGE = .FALSE.
IF ( KWBOT-KWTOP+1 .GE. 2 ) THEN
BULGE = A( KWBOT, KWBOT-1 ) .NE. ZERO
END IF
IF ( BULGE ) THEN
* Try to deflate complex conjugate eigenvalue pair
TEMP = ABS( A( KWBOT, KWBOT ) )+SQRT( ABS( A( KWBOT,
$ KWBOT-1 ) ) )*SQRT( ABS( A( KWBOT-1, KWBOT ) ) )
IF( TEMP .EQ. ZERO )THEN
TEMP = ABS( S )
END IF
IF ( MAX( ABS( S*QC( 1, KWBOT-KWTOP ) ), ABS( S*QC( 1,
$ KWBOT-KWTOP+1 ) ) ) .LE. MAX( SMLNUM,
$ ULP*TEMP ) ) THEN
* Deflatable
KWBOT = KWBOT-2
ELSE
* Not deflatable, move out of the way
IFST = KWBOT-KWTOP+1
ILST = K2
CALL DTGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ),
$ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC,
$ ZC, LDZC, IFST, ILST, WORK, LWORK,
$ DTGEXC_INFO )
K2 = K2+2
END IF
K = K+2
ELSE
* Try to deflate real eigenvalue
TEMP = ABS( A( KWBOT, KWBOT ) )
IF( TEMP .EQ. ZERO ) THEN
TEMP = ABS( S )
END IF
IF ( ( ABS( S*QC( 1, KWBOT-KWTOP+1 ) ) ) .LE. MAX( ULP*
$ TEMP, SMLNUM ) ) THEN
* Deflatable
KWBOT = KWBOT-1
ELSE
* Not deflatable, move out of the way
IFST = KWBOT-KWTOP+1
ILST = K2
CALL DTGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ),
$ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC,
$ ZC, LDZC, IFST, ILST, WORK, LWORK,
$ DTGEXC_INFO )
K2 = K2+1
END IF
K = K+1
END IF
END DO
END IF
* Store eigenvalues
ND = IHI-KWBOT
NS = JW-ND
K = KWTOP
DO WHILE ( K .LE. IHI )
BULGE = .FALSE.
IF ( K .LT. IHI ) THEN
IF ( A( K+1, K ) .NE. ZERO ) THEN
BULGE = .TRUE.
END IF
END IF
IF ( BULGE ) THEN
* 2x2 eigenvalue block
CALL DLAG2( A( K, K ), LDA, B( K, K ), LDB, SAFMIN,
$ BETA( K ), BETA( K+1 ), ALPHAR( K ),
$ ALPHAR( K+1 ), ALPHAI( K ) )
ALPHAI( K+1 ) = -ALPHAI( K )
K = K+2
ELSE
* 1x1 eigenvalue block
ALPHAR( K ) = A( K, K )
ALPHAI( K ) = ZERO
BETA( K ) = B( K, K )
K = K+1
END IF
END DO
IF ( KWTOP .NE. ILO .AND. S .NE. ZERO ) THEN
* Reflect spike back, this will create optimally packed bulges
A( KWTOP:KWBOT, KWTOP-1 ) = A( KWTOP, KWTOP-1 )*QC( 1,
$ 1:JW-ND )
DO K = KWBOT-1, KWTOP, -1
CALL DLARTG( A( K, KWTOP-1 ), A( K+1, KWTOP-1 ), C1, S1,
$ TEMP )
A( K, KWTOP-1 ) = TEMP
A( K+1, KWTOP-1 ) = ZERO
K2 = MAX( KWTOP, K-1 )
CALL DROT( IHI-K2+1, A( K, K2 ), LDA, A( K+1, K2 ), LDA, C1,
$ S1 )
CALL DROT( IHI-( K-1 )+1, B( K, K-1 ), LDB, B( K+1, K-1 ),
$ LDB, C1, S1 )
CALL DROT( JW, QC( 1, K-KWTOP+1 ), 1, QC( 1, K+1-KWTOP+1 ),
$ 1, C1, S1 )
END DO
* Chase bulges down
ISTARTM = KWTOP
ISTOPM = IHI
K = KWBOT-1
DO WHILE ( K .GE. KWTOP )
IF ( ( K .GE. KWTOP+1 ) .AND. A( K+1, K-1 ) .NE. ZERO ) THEN
* Move double pole block down and remove it
DO K2 = K-1, KWBOT-2
CALL DLAQZ2( .TRUE., .TRUE., K2, KWTOP, KWTOP+JW-1,
$ KWBOT, A, LDA, B, LDB, JW, KWTOP, QC,
$ LDQC, JW, KWTOP, ZC, LDZC )
END DO
K = K-2
ELSE
* k points to single shift
DO K2 = K, KWBOT-2
* Move shift down
CALL DLARTG( B( K2+1, K2+1 ), B( K2+1, K2 ), C1, S1,
$ TEMP )
B( K2+1, K2+1 ) = TEMP
B( K2+1, K2 ) = ZERO
CALL DROT( K2+2-ISTARTM+1, A( ISTARTM, K2+1 ), 1,
$ A( ISTARTM, K2 ), 1, C1, S1 )
CALL DROT( K2-ISTARTM+1, B( ISTARTM, K2+1 ), 1,
$ B( ISTARTM, K2 ), 1, C1, S1 )
CALL DROT( JW, ZC( 1, K2+1-KWTOP+1 ), 1, ZC( 1,
$ K2-KWTOP+1 ), 1, C1, S1 )
CALL DLARTG( A( K2+1, K2 ), A( K2+2, K2 ), C1, S1,
$ TEMP )
A( K2+1, K2 ) = TEMP
A( K2+2, K2 ) = ZERO
CALL DROT( ISTOPM-K2, A( K2+1, K2+1 ), LDA, A( K2+2,
$ K2+1 ), LDA, C1, S1 )
CALL DROT( ISTOPM-K2, B( K2+1, K2+1 ), LDB, B( K2+2,
$ K2+1 ), LDB, C1, S1 )
CALL DROT( JW, QC( 1, K2+1-KWTOP+1 ), 1, QC( 1,
$ K2+2-KWTOP+1 ), 1, C1, S1 )
END DO
* Remove the shift
CALL DLARTG( B( KWBOT, KWBOT ), B( KWBOT, KWBOT-1 ), C1,
$ S1, TEMP )
B( KWBOT, KWBOT ) = TEMP
B( KWBOT, KWBOT-1 ) = ZERO
CALL DROT( KWBOT-ISTARTM, B( ISTARTM, KWBOT ), 1,
$ B( ISTARTM, KWBOT-1 ), 1, C1, S1 )
CALL DROT( KWBOT-ISTARTM+1, A( ISTARTM, KWBOT ), 1,
$ A( ISTARTM, KWBOT-1 ), 1, C1, S1 )
CALL DROT( JW, ZC( 1, KWBOT-KWTOP+1 ), 1, ZC( 1,
$ KWBOT-1-KWTOP+1 ), 1, C1, S1 )
K = K-1
END IF
END DO
END IF
* Apply Qc and Zc to rest of the matrix
IF ( ILSCHUR ) THEN
ISTARTM = 1
ISTOPM = N
ELSE
ISTARTM = ILO
ISTOPM = IHI
END IF
IF ( ISTOPM-IHI > 0 ) THEN
CALL DGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC,
$ A( KWTOP, IHI+1 ), LDA, ZERO, WORK, JW )
CALL DLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, A( KWTOP,
$ IHI+1 ), LDA )
CALL DGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC,
$ B( KWTOP, IHI+1 ), LDB, ZERO, WORK, JW )
CALL DLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, B( KWTOP,
$ IHI+1 ), LDB )
END IF
IF ( ILQ ) THEN
CALL DGEMM( 'N', 'N', N, JW, JW, ONE, Q( 1, KWTOP ), LDQ, QC,
$ LDQC, ZERO, WORK, N )
CALL DLACPY( 'ALL', N, JW, WORK, N, Q( 1, KWTOP ), LDQ )
END IF
IF ( KWTOP-1-ISTARTM+1 > 0 ) THEN
CALL DGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, A( ISTARTM,
$ KWTOP ), LDA, ZC, LDZC, ZERO, WORK,
$ KWTOP-ISTARTM )
CALL DLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
$ A( ISTARTM, KWTOP ), LDA )
CALL DGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, B( ISTARTM,
$ KWTOP ), LDB, ZC, LDZC, ZERO, WORK,
$ KWTOP-ISTARTM )
CALL DLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
$ B( ISTARTM, KWTOP ), LDB )
END IF
IF ( ILZ ) THEN
CALL DGEMM( 'N', 'N', N, JW, JW, ONE, Z( 1, KWTOP ), LDZ, ZC,
$ LDZC, ZERO, WORK, N )
CALL DLACPY( 'ALL', N, JW, WORK, N, Z( 1, KWTOP ), LDZ )
END IF
END SUBROUTINE