You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
492 lines
15 KiB
492 lines
15 KiB
*> \brief \b DLARRF finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLARRF + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrf.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrf.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrf.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND,
|
|
* W, WGAP, WERR,
|
|
* SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA,
|
|
* DPLUS, LPLUS, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER CLSTRT, CLEND, INFO, N
|
|
* DOUBLE PRECISION CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * ), DPLUS( * ), L( * ), LD( * ),
|
|
* $ LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Given the initial representation L D L^T and its cluster of close
|
|
*> eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
|
|
*> W( CLEND ), DLARRF finds a new relatively robust representation
|
|
*> L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
|
|
*> eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix (subblock, if the matrix split).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The N diagonal elements of the diagonal matrix D.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] L
|
|
*> \verbatim
|
|
*> L is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The (N-1) subdiagonal elements of the unit bidiagonal
|
|
*> matrix L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LD
|
|
*> \verbatim
|
|
*> LD is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The (N-1) elements L(i)*D(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CLSTRT
|
|
*> \verbatim
|
|
*> CLSTRT is INTEGER
|
|
*> The index of the first eigenvalue in the cluster.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CLEND
|
|
*> \verbatim
|
|
*> CLEND is INTEGER
|
|
*> The index of the last eigenvalue in the cluster.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] W
|
|
*> \verbatim
|
|
*> W is DOUBLE PRECISION array, dimension
|
|
*> dimension is >= (CLEND-CLSTRT+1)
|
|
*> The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
|
|
*> W( CLSTRT ) through W( CLEND ) form the cluster of relatively
|
|
*> close eigenalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] WGAP
|
|
*> \verbatim
|
|
*> WGAP is DOUBLE PRECISION array, dimension
|
|
*> dimension is >= (CLEND-CLSTRT+1)
|
|
*> The separation from the right neighbor eigenvalue in W.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] WERR
|
|
*> \verbatim
|
|
*> WERR is DOUBLE PRECISION array, dimension
|
|
*> dimension is >= (CLEND-CLSTRT+1)
|
|
*> WERR contain the semiwidth of the uncertainty
|
|
*> interval of the corresponding eigenvalue APPROXIMATION in W
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SPDIAM
|
|
*> \verbatim
|
|
*> SPDIAM is DOUBLE PRECISION
|
|
*> estimate of the spectral diameter obtained from the
|
|
*> Gerschgorin intervals
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CLGAPL
|
|
*> \verbatim
|
|
*> CLGAPL is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CLGAPR
|
|
*> \verbatim
|
|
*> CLGAPR is DOUBLE PRECISION
|
|
*> absolute gap on each end of the cluster.
|
|
*> Set by the calling routine to protect against shifts too close
|
|
*> to eigenvalues outside the cluster.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PIVMIN
|
|
*> \verbatim
|
|
*> PIVMIN is DOUBLE PRECISION
|
|
*> The minimum pivot allowed in the Sturm sequence.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SIGMA
|
|
*> \verbatim
|
|
*> SIGMA is DOUBLE PRECISION
|
|
*> The shift used to form L(+) D(+) L(+)^T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DPLUS
|
|
*> \verbatim
|
|
*> DPLUS is DOUBLE PRECISION array, dimension (N)
|
|
*> The N diagonal elements of the diagonal matrix D(+).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] LPLUS
|
|
*> \verbatim
|
|
*> LPLUS is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The first (N-1) elements of LPLUS contain the subdiagonal
|
|
*> elements of the unit bidiagonal matrix L(+).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (2*N)
|
|
*> Workspace.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> Signals processing OK (=0) or failure (=1)
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Beresford Parlett, University of California, Berkeley, USA \n
|
|
*> Jim Demmel, University of California, Berkeley, USA \n
|
|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
|
|
*> Osni Marques, LBNL/NERSC, USA \n
|
|
*> Christof Voemel, University of California, Berkeley, USA
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND,
|
|
$ W, WGAP, WERR,
|
|
$ SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA,
|
|
$ DPLUS, LPLUS, WORK, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER CLSTRT, CLEND, INFO, N
|
|
DOUBLE PRECISION CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * ), DPLUS( * ), L( * ), LD( * ),
|
|
$ LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION FOUR, MAXGROWTH1, MAXGROWTH2, ONE, QUART, TWO
|
|
PARAMETER ( ONE = 1.0D0, TWO = 2.0D0, FOUR = 4.0D0,
|
|
$ QUART = 0.25D0,
|
|
$ MAXGROWTH1 = 8.D0,
|
|
$ MAXGROWTH2 = 8.D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL DORRR1, FORCER, NOFAIL, SAWNAN1, SAWNAN2, TRYRRR1
|
|
INTEGER I, INDX, KTRY, KTRYMAX, SLEFT, SRIGHT, SHIFT
|
|
PARAMETER ( KTRYMAX = 1, SLEFT = 1, SRIGHT = 2 )
|
|
DOUBLE PRECISION AVGAP, BESTSHIFT, CLWDTH, EPS, FACT, FAIL,
|
|
$ FAIL2, GROWTHBOUND, LDELTA, LDMAX, LSIGMA,
|
|
$ MAX1, MAX2, MINGAP, OLDP, PROD, RDELTA, RDMAX,
|
|
$ RRR1, RRR2, RSIGMA, S, SMLGROWTH, TMP, ZNM2
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL DISNAN
|
|
DOUBLE PRECISION DLAMCH
|
|
EXTERNAL DISNAN, DLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
FACT = DBLE(2**KTRYMAX)
|
|
EPS = DLAMCH( 'Precision' )
|
|
SHIFT = 0
|
|
FORCER = .FALSE.
|
|
|
|
|
|
* Note that we cannot guarantee that for any of the shifts tried,
|
|
* the factorization has a small or even moderate element growth.
|
|
* There could be Ritz values at both ends of the cluster and despite
|
|
* backing off, there are examples where all factorizations tried
|
|
* (in IEEE mode, allowing zero pivots & infinities) have INFINITE
|
|
* element growth.
|
|
* For this reason, we should use PIVMIN in this subroutine so that at
|
|
* least the L D L^T factorization exists. It can be checked afterwards
|
|
* whether the element growth caused bad residuals/orthogonality.
|
|
|
|
* Decide whether the code should accept the best among all
|
|
* representations despite large element growth or signal INFO=1
|
|
* Setting NOFAIL to .FALSE. for quick fix for bug 113
|
|
NOFAIL = .FALSE.
|
|
*
|
|
|
|
* Compute the average gap length of the cluster
|
|
CLWDTH = ABS(W(CLEND)-W(CLSTRT)) + WERR(CLEND) + WERR(CLSTRT)
|
|
AVGAP = CLWDTH / DBLE(CLEND-CLSTRT)
|
|
MINGAP = MIN(CLGAPL, CLGAPR)
|
|
* Initial values for shifts to both ends of cluster
|
|
LSIGMA = MIN(W( CLSTRT ),W( CLEND )) - WERR( CLSTRT )
|
|
RSIGMA = MAX(W( CLSTRT ),W( CLEND )) + WERR( CLEND )
|
|
|
|
* Use a small fudge to make sure that we really shift to the outside
|
|
LSIGMA = LSIGMA - ABS(LSIGMA)* FOUR * EPS
|
|
RSIGMA = RSIGMA + ABS(RSIGMA)* FOUR * EPS
|
|
|
|
* Compute upper bounds for how much to back off the initial shifts
|
|
LDMAX = QUART * MINGAP + TWO * PIVMIN
|
|
RDMAX = QUART * MINGAP + TWO * PIVMIN
|
|
|
|
LDELTA = MAX(AVGAP,WGAP( CLSTRT ))/FACT
|
|
RDELTA = MAX(AVGAP,WGAP( CLEND-1 ))/FACT
|
|
*
|
|
* Initialize the record of the best representation found
|
|
*
|
|
S = DLAMCH( 'S' )
|
|
SMLGROWTH = ONE / S
|
|
FAIL = DBLE(N-1)*MINGAP/(SPDIAM*EPS)
|
|
FAIL2 = DBLE(N-1)*MINGAP/(SPDIAM*SQRT(EPS))
|
|
BESTSHIFT = LSIGMA
|
|
*
|
|
* while (KTRY <= KTRYMAX)
|
|
KTRY = 0
|
|
GROWTHBOUND = MAXGROWTH1*SPDIAM
|
|
|
|
5 CONTINUE
|
|
SAWNAN1 = .FALSE.
|
|
SAWNAN2 = .FALSE.
|
|
* Ensure that we do not back off too much of the initial shifts
|
|
LDELTA = MIN(LDMAX,LDELTA)
|
|
RDELTA = MIN(RDMAX,RDELTA)
|
|
|
|
* Compute the element growth when shifting to both ends of the cluster
|
|
* accept the shift if there is no element growth at one of the two ends
|
|
|
|
* Left end
|
|
S = -LSIGMA
|
|
DPLUS( 1 ) = D( 1 ) + S
|
|
IF(ABS(DPLUS(1)).LT.PIVMIN) THEN
|
|
DPLUS(1) = -PIVMIN
|
|
* Need to set SAWNAN1 because refined RRR test should not be used
|
|
* in this case
|
|
SAWNAN1 = .TRUE.
|
|
ENDIF
|
|
MAX1 = ABS( DPLUS( 1 ) )
|
|
DO 6 I = 1, N - 1
|
|
LPLUS( I ) = LD( I ) / DPLUS( I )
|
|
S = S*LPLUS( I )*L( I ) - LSIGMA
|
|
DPLUS( I+1 ) = D( I+1 ) + S
|
|
IF(ABS(DPLUS(I+1)).LT.PIVMIN) THEN
|
|
DPLUS(I+1) = -PIVMIN
|
|
* Need to set SAWNAN1 because refined RRR test should not be used
|
|
* in this case
|
|
SAWNAN1 = .TRUE.
|
|
ENDIF
|
|
MAX1 = MAX( MAX1,ABS(DPLUS(I+1)) )
|
|
6 CONTINUE
|
|
SAWNAN1 = SAWNAN1 .OR. DISNAN( MAX1 )
|
|
|
|
IF( FORCER .OR.
|
|
$ (MAX1.LE.GROWTHBOUND .AND. .NOT.SAWNAN1 ) ) THEN
|
|
SIGMA = LSIGMA
|
|
SHIFT = SLEFT
|
|
GOTO 100
|
|
ENDIF
|
|
|
|
* Right end
|
|
S = -RSIGMA
|
|
WORK( 1 ) = D( 1 ) + S
|
|
IF(ABS(WORK(1)).LT.PIVMIN) THEN
|
|
WORK(1) = -PIVMIN
|
|
* Need to set SAWNAN2 because refined RRR test should not be used
|
|
* in this case
|
|
SAWNAN2 = .TRUE.
|
|
ENDIF
|
|
MAX2 = ABS( WORK( 1 ) )
|
|
DO 7 I = 1, N - 1
|
|
WORK( N+I ) = LD( I ) / WORK( I )
|
|
S = S*WORK( N+I )*L( I ) - RSIGMA
|
|
WORK( I+1 ) = D( I+1 ) + S
|
|
IF(ABS(WORK(I+1)).LT.PIVMIN) THEN
|
|
WORK(I+1) = -PIVMIN
|
|
* Need to set SAWNAN2 because refined RRR test should not be used
|
|
* in this case
|
|
SAWNAN2 = .TRUE.
|
|
ENDIF
|
|
MAX2 = MAX( MAX2,ABS(WORK(I+1)) )
|
|
7 CONTINUE
|
|
SAWNAN2 = SAWNAN2 .OR. DISNAN( MAX2 )
|
|
|
|
IF( FORCER .OR.
|
|
$ (MAX2.LE.GROWTHBOUND .AND. .NOT.SAWNAN2 ) ) THEN
|
|
SIGMA = RSIGMA
|
|
SHIFT = SRIGHT
|
|
GOTO 100
|
|
ENDIF
|
|
* If we are at this point, both shifts led to too much element growth
|
|
|
|
* Record the better of the two shifts (provided it didn't lead to NaN)
|
|
IF(SAWNAN1.AND.SAWNAN2) THEN
|
|
* both MAX1 and MAX2 are NaN
|
|
GOTO 50
|
|
ELSE
|
|
IF( .NOT.SAWNAN1 ) THEN
|
|
INDX = 1
|
|
IF(MAX1.LE.SMLGROWTH) THEN
|
|
SMLGROWTH = MAX1
|
|
BESTSHIFT = LSIGMA
|
|
ENDIF
|
|
ENDIF
|
|
IF( .NOT.SAWNAN2 ) THEN
|
|
IF(SAWNAN1 .OR. MAX2.LE.MAX1) INDX = 2
|
|
IF(MAX2.LE.SMLGROWTH) THEN
|
|
SMLGROWTH = MAX2
|
|
BESTSHIFT = RSIGMA
|
|
ENDIF
|
|
ENDIF
|
|
ENDIF
|
|
|
|
* If we are here, both the left and the right shift led to
|
|
* element growth. If the element growth is moderate, then
|
|
* we may still accept the representation, if it passes a
|
|
* refined test for RRR. This test supposes that no NaN occurred.
|
|
* Moreover, we use the refined RRR test only for isolated clusters.
|
|
IF((CLWDTH.LT.MINGAP/DBLE(128)) .AND.
|
|
$ (MIN(MAX1,MAX2).LT.FAIL2)
|
|
$ .AND.(.NOT.SAWNAN1).AND.(.NOT.SAWNAN2)) THEN
|
|
DORRR1 = .TRUE.
|
|
ELSE
|
|
DORRR1 = .FALSE.
|
|
ENDIF
|
|
TRYRRR1 = .TRUE.
|
|
IF( TRYRRR1 .AND. DORRR1 ) THEN
|
|
IF(INDX.EQ.1) THEN
|
|
TMP = ABS( DPLUS( N ) )
|
|
ZNM2 = ONE
|
|
PROD = ONE
|
|
OLDP = ONE
|
|
DO 15 I = N-1, 1, -1
|
|
IF( PROD .LE. EPS ) THEN
|
|
PROD =
|
|
$ ((DPLUS(I+1)*WORK(N+I+1))/(DPLUS(I)*WORK(N+I)))*OLDP
|
|
ELSE
|
|
PROD = PROD*ABS(WORK(N+I))
|
|
END IF
|
|
OLDP = PROD
|
|
ZNM2 = ZNM2 + PROD**2
|
|
TMP = MAX( TMP, ABS( DPLUS( I ) * PROD ))
|
|
15 CONTINUE
|
|
RRR1 = TMP/( SPDIAM * SQRT( ZNM2 ) )
|
|
IF (RRR1.LE.MAXGROWTH2) THEN
|
|
SIGMA = LSIGMA
|
|
SHIFT = SLEFT
|
|
GOTO 100
|
|
ENDIF
|
|
ELSE IF(INDX.EQ.2) THEN
|
|
TMP = ABS( WORK( N ) )
|
|
ZNM2 = ONE
|
|
PROD = ONE
|
|
OLDP = ONE
|
|
DO 16 I = N-1, 1, -1
|
|
IF( PROD .LE. EPS ) THEN
|
|
PROD = ((WORK(I+1)*LPLUS(I+1))/(WORK(I)*LPLUS(I)))*OLDP
|
|
ELSE
|
|
PROD = PROD*ABS(LPLUS(I))
|
|
END IF
|
|
OLDP = PROD
|
|
ZNM2 = ZNM2 + PROD**2
|
|
TMP = MAX( TMP, ABS( WORK( I ) * PROD ))
|
|
16 CONTINUE
|
|
RRR2 = TMP/( SPDIAM * SQRT( ZNM2 ) )
|
|
IF (RRR2.LE.MAXGROWTH2) THEN
|
|
SIGMA = RSIGMA
|
|
SHIFT = SRIGHT
|
|
GOTO 100
|
|
ENDIF
|
|
END IF
|
|
ENDIF
|
|
|
|
50 CONTINUE
|
|
|
|
IF (KTRY.LT.KTRYMAX) THEN
|
|
* If we are here, both shifts failed also the RRR test.
|
|
* Back off to the outside
|
|
LSIGMA = MAX( LSIGMA - LDELTA,
|
|
$ LSIGMA - LDMAX)
|
|
RSIGMA = MIN( RSIGMA + RDELTA,
|
|
$ RSIGMA + RDMAX )
|
|
LDELTA = TWO * LDELTA
|
|
RDELTA = TWO * RDELTA
|
|
KTRY = KTRY + 1
|
|
GOTO 5
|
|
ELSE
|
|
* None of the representations investigated satisfied our
|
|
* criteria. Take the best one we found.
|
|
IF((SMLGROWTH.LT.FAIL).OR.NOFAIL) THEN
|
|
LSIGMA = BESTSHIFT
|
|
RSIGMA = BESTSHIFT
|
|
FORCER = .TRUE.
|
|
GOTO 5
|
|
ELSE
|
|
INFO = 1
|
|
RETURN
|
|
ENDIF
|
|
END IF
|
|
|
|
100 CONTINUE
|
|
IF (SHIFT.EQ.SLEFT) THEN
|
|
ELSEIF (SHIFT.EQ.SRIGHT) THEN
|
|
* store new L and D back into DPLUS, LPLUS
|
|
CALL DCOPY( N, WORK, 1, DPLUS, 1 )
|
|
CALL DCOPY( N-1, WORK(N+1), 1, LPLUS, 1 )
|
|
ENDIF
|
|
|
|
RETURN
|
|
*
|
|
* End of DLARRF
|
|
*
|
|
END
|
|
|