Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

319 lines
8.7 KiB

*> \brief \b DORBDB6
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DORBDB6 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb6.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb6.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb6.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
* LDQ2, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
* $ N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*>\verbatim
*>
*> DORBDB6 orthogonalizes the column vector
*> X = [ X1 ]
*> [ X2 ]
*> with respect to the columns of
*> Q = [ Q1 ] .
*> [ Q2 ]
*> The Euclidean norm of X must be one and the columns of Q must be
*> orthonormal. The orthogonalized vector will be zero if and only if it
*> lies entirely in the range of Q.
*>
*> The projection is computed with at most two iterations of the
*> classical Gram-Schmidt algorithm, see
*> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error
*> analysis of the Gram-Schmidt algorithm with reorthogonalization."
*> 2002. CERFACS Technical Report No. TR/PA/02/33. URL:
*> https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf
*>
*>\endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M1
*> \verbatim
*> M1 is INTEGER
*> The dimension of X1 and the number of rows in Q1. 0 <= M1.
*> \endverbatim
*>
*> \param[in] M2
*> \verbatim
*> M2 is INTEGER
*> The dimension of X2 and the number of rows in Q2. 0 <= M2.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns in Q1 and Q2. 0 <= N.
*> \endverbatim
*>
*> \param[in,out] X1
*> \verbatim
*> X1 is DOUBLE PRECISION array, dimension (M1)
*> On entry, the top part of the vector to be orthogonalized.
*> On exit, the top part of the projected vector.
*> \endverbatim
*>
*> \param[in] INCX1
*> \verbatim
*> INCX1 is INTEGER
*> Increment for entries of X1.
*> \endverbatim
*>
*> \param[in,out] X2
*> \verbatim
*> X2 is DOUBLE PRECISION array, dimension (M2)
*> On entry, the bottom part of the vector to be
*> orthogonalized. On exit, the bottom part of the projected
*> vector.
*> \endverbatim
*>
*> \param[in] INCX2
*> \verbatim
*> INCX2 is INTEGER
*> Increment for entries of X2.
*> \endverbatim
*>
*> \param[in] Q1
*> \verbatim
*> Q1 is DOUBLE PRECISION array, dimension (LDQ1, N)
*> The top part of the orthonormal basis matrix.
*> \endverbatim
*>
*> \param[in] LDQ1
*> \verbatim
*> LDQ1 is INTEGER
*> The leading dimension of Q1. LDQ1 >= M1.
*> \endverbatim
*>
*> \param[in] Q2
*> \verbatim
*> Q2 is DOUBLE PRECISION array, dimension (LDQ2, N)
*> The bottom part of the orthonormal basis matrix.
*> \endverbatim
*>
*> \param[in] LDQ2
*> \verbatim
*> LDQ2 is INTEGER
*> The leading dimension of Q2. LDQ2 >= M2.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= N.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleOTHERcomputational
*
* =====================================================================
SUBROUTINE DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
$ LDQ2, WORK, LWORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
$ N
* ..
* .. Array Arguments ..
DOUBLE PRECISION Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ALPHA, REALONE, REALZERO
PARAMETER ( ALPHA = 0.01D0, REALONE = 1.0D0,
$ REALZERO = 0.0D0 )
DOUBLE PRECISION NEGONE, ONE, ZERO
PARAMETER ( NEGONE = -1.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
* ..
* .. Local Scalars ..
INTEGER I, IX
DOUBLE PRECISION EPS, NORM, NORM_NEW, SCL, SSQ
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DGEMV, DLASSQ, XERBLA
* ..
* .. Intrinsic Function ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test input arguments
*
INFO = 0
IF( M1 .LT. 0 ) THEN
INFO = -1
ELSE IF( M2 .LT. 0 ) THEN
INFO = -2
ELSE IF( N .LT. 0 ) THEN
INFO = -3
ELSE IF( INCX1 .LT. 1 ) THEN
INFO = -5
ELSE IF( INCX2 .LT. 1 ) THEN
INFO = -7
ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
INFO = -9
ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
INFO = -11
ELSE IF( LWORK .LT. N ) THEN
INFO = -13
END IF
*
IF( INFO .NE. 0 ) THEN
CALL XERBLA( 'DORBDB6', -INFO )
RETURN
END IF
*
EPS = DLAMCH( 'Precision' )
*
* First, project X onto the orthogonal complement of Q's column
* space
*
* Christoph Conrads: In debugging mode the norm should be computed
* and an assertion added comparing the norm with one. Alas, Fortran
* never made it into 1989 when assert() was introduced into the C
* programming language.
NORM = REALONE
*
IF( M1 .EQ. 0 ) THEN
DO I = 1, N
WORK(I) = ZERO
END DO
ELSE
CALL DGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
$ 1 )
END IF
*
CALL DGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
*
CALL DGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
$ INCX1 )
CALL DGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
$ INCX2 )
*
SCL = REALZERO
SSQ = REALZERO
CALL DLASSQ( M1, X1, INCX1, SCL, SSQ )
CALL DLASSQ( M2, X2, INCX2, SCL, SSQ )
NORM_NEW = SCL * SQRT(SSQ)
*
* If projection is sufficiently large in norm, then stop.
* If projection is zero, then stop.
* Otherwise, project again.
*
IF( NORM_NEW .GE. ALPHA * NORM ) THEN
RETURN
END IF
*
IF( NORM_NEW .LE. N * EPS * NORM ) THEN
DO IX = 1, 1 + (M1-1)*INCX1, INCX1
X1( IX ) = ZERO
END DO
DO IX = 1, 1 + (M2-1)*INCX2, INCX2
X2( IX ) = ZERO
END DO
RETURN
END IF
*
NORM = NORM_NEW
*
DO I = 1, N
WORK(I) = ZERO
END DO
*
IF( M1 .EQ. 0 ) THEN
DO I = 1, N
WORK(I) = ZERO
END DO
ELSE
CALL DGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
$ 1 )
END IF
*
CALL DGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
*
CALL DGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
$ INCX1 )
CALL DGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
$ INCX2 )
*
SCL = REALZERO
SSQ = REALZERO
CALL DLASSQ( M1, X1, INCX1, SCL, SSQ )
CALL DLASSQ( M2, X2, INCX2, SCL, SSQ )
NORM_NEW = SCL * SQRT(SSQ)
*
* If second projection is sufficiently large in norm, then do
* nothing more. Alternatively, if it shrunk significantly, then
* truncate it to zero.
*
IF( NORM_NEW .LT. ALPHA * NORM ) THEN
DO IX = 1, 1 + (M1-1)*INCX1, INCX1
X1(IX) = ZERO
END DO
DO IX = 1, 1 + (M2-1)*INCX2, INCX2
X2(IX) = ZERO
END DO
END IF
*
RETURN
*
* End of DORBDB6
*
END