You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
316 lines
8.9 KiB
316 lines
8.9 KiB
*> \brief \b DPBSTF
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DPBSTF + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbstf.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbstf.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbstf.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, KD, LDAB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION AB( LDAB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DPBSTF computes a split Cholesky factorization of a real
|
|
*> symmetric positive definite band matrix A.
|
|
*>
|
|
*> This routine is designed to be used in conjunction with DSBGST.
|
|
*>
|
|
*> The factorization has the form A = S**T*S where S is a band matrix
|
|
*> of the same bandwidth as A and the following structure:
|
|
*>
|
|
*> S = ( U )
|
|
*> ( M L )
|
|
*>
|
|
*> where U is upper triangular of order m = (n+kd)/2, and L is lower
|
|
*> triangular of order n-m.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KD
|
|
*> \verbatim
|
|
*> KD is INTEGER
|
|
*> The number of superdiagonals of the matrix A if UPLO = 'U',
|
|
*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is DOUBLE PRECISION array, dimension (LDAB,N)
|
|
*> On entry, the upper or lower triangle of the symmetric band
|
|
*> matrix A, stored in the first kd+1 rows of the array. The
|
|
*> j-th column of A is stored in the j-th column of the array AB
|
|
*> as follows:
|
|
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
|
|
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
|
|
*>
|
|
*> On exit, if INFO = 0, the factor S from the split Cholesky
|
|
*> factorization A = S**T*S. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KD+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, the factorization could not be completed,
|
|
*> because the updated element a(i,i) was negative; the
|
|
*> matrix A is not positive definite.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The band storage scheme is illustrated by the following example, when
|
|
*> N = 7, KD = 2:
|
|
*>
|
|
*> S = ( s11 s12 s13 )
|
|
*> ( s22 s23 s24 )
|
|
*> ( s33 s34 )
|
|
*> ( s44 )
|
|
*> ( s53 s54 s55 )
|
|
*> ( s64 s65 s66 )
|
|
*> ( s75 s76 s77 )
|
|
*>
|
|
*> If UPLO = 'U', the array AB holds:
|
|
*>
|
|
*> on entry: on exit:
|
|
*>
|
|
*> * * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75
|
|
*> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76
|
|
*> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
|
|
*>
|
|
*> If UPLO = 'L', the array AB holds:
|
|
*>
|
|
*> on entry: on exit:
|
|
*>
|
|
*> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
|
|
*> a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 *
|
|
*> a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * *
|
|
*>
|
|
*> Array elements marked * are not used by the routine.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, KD, LDAB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION AB( LDAB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER J, KLD, KM, M
|
|
DOUBLE PRECISION AJJ
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DSCAL, DSYR, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( KD.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDAB.LT.KD+1 ) THEN
|
|
INFO = -5
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DPBSTF', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
KLD = MAX( 1, LDAB-1 )
|
|
*
|
|
* Set the splitting point m.
|
|
*
|
|
M = ( N+KD ) / 2
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
|
|
*
|
|
DO 10 J = N, M + 1, -1
|
|
*
|
|
* Compute s(j,j) and test for non-positive-definiteness.
|
|
*
|
|
AJJ = AB( KD+1, J )
|
|
IF( AJJ.LE.ZERO )
|
|
$ GO TO 50
|
|
AJJ = SQRT( AJJ )
|
|
AB( KD+1, J ) = AJJ
|
|
KM = MIN( J-1, KD )
|
|
*
|
|
* Compute elements j-km:j-1 of the j-th column and update the
|
|
* the leading submatrix within the band.
|
|
*
|
|
CALL DSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
|
|
CALL DSYR( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
|
|
$ AB( KD+1, J-KM ), KLD )
|
|
10 CONTINUE
|
|
*
|
|
* Factorize the updated submatrix A(1:m,1:m) as U**T*U.
|
|
*
|
|
DO 20 J = 1, M
|
|
*
|
|
* Compute s(j,j) and test for non-positive-definiteness.
|
|
*
|
|
AJJ = AB( KD+1, J )
|
|
IF( AJJ.LE.ZERO )
|
|
$ GO TO 50
|
|
AJJ = SQRT( AJJ )
|
|
AB( KD+1, J ) = AJJ
|
|
KM = MIN( KD, M-J )
|
|
*
|
|
* Compute elements j+1:j+km of the j-th row and update the
|
|
* trailing submatrix within the band.
|
|
*
|
|
IF( KM.GT.0 ) THEN
|
|
CALL DSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
|
|
CALL DSYR( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
|
|
$ AB( KD+1, J+1 ), KLD )
|
|
END IF
|
|
20 CONTINUE
|
|
ELSE
|
|
*
|
|
* Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
|
|
*
|
|
DO 30 J = N, M + 1, -1
|
|
*
|
|
* Compute s(j,j) and test for non-positive-definiteness.
|
|
*
|
|
AJJ = AB( 1, J )
|
|
IF( AJJ.LE.ZERO )
|
|
$ GO TO 50
|
|
AJJ = SQRT( AJJ )
|
|
AB( 1, J ) = AJJ
|
|
KM = MIN( J-1, KD )
|
|
*
|
|
* Compute elements j-km:j-1 of the j-th row and update the
|
|
* trailing submatrix within the band.
|
|
*
|
|
CALL DSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
|
|
CALL DSYR( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
|
|
$ AB( 1, J-KM ), KLD )
|
|
30 CONTINUE
|
|
*
|
|
* Factorize the updated submatrix A(1:m,1:m) as U**T*U.
|
|
*
|
|
DO 40 J = 1, M
|
|
*
|
|
* Compute s(j,j) and test for non-positive-definiteness.
|
|
*
|
|
AJJ = AB( 1, J )
|
|
IF( AJJ.LE.ZERO )
|
|
$ GO TO 50
|
|
AJJ = SQRT( AJJ )
|
|
AB( 1, J ) = AJJ
|
|
KM = MIN( KD, M-J )
|
|
*
|
|
* Compute elements j+1:j+km of the j-th column and update the
|
|
* trailing submatrix within the band.
|
|
*
|
|
IF( KM.GT.0 ) THEN
|
|
CALL DSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
|
|
CALL DSYR( 'Lower', KM, -ONE, AB( 2, J ), 1,
|
|
$ AB( 1, J+1 ), KLD )
|
|
END IF
|
|
40 CONTINUE
|
|
END IF
|
|
RETURN
|
|
*
|
|
50 CONTINUE
|
|
INFO = J
|
|
RETURN
|
|
*
|
|
* End of DPBSTF
|
|
*
|
|
END
|
|
|