You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
8.2 KiB
277 lines
8.2 KiB
*> \brief \b DPFTRS
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DPFTRS + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrs.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrs.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrs.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANSR, UPLO
|
|
* INTEGER INFO, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( 0: * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DPFTRS solves a system of linear equations A*X = B with a symmetric
|
|
*> positive definite matrix A using the Cholesky factorization
|
|
*> A = U**T*U or A = L*L**T computed by DPFTRF.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANSR
|
|
*> \verbatim
|
|
*> TRANSR is CHARACTER*1
|
|
*> = 'N': The Normal TRANSR of RFP A is stored;
|
|
*> = 'T': The Transpose TRANSR of RFP A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of RFP A is stored;
|
|
*> = 'L': Lower triangle of RFP A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrix B. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ).
|
|
*> The triangular factor U or L from the Cholesky factorization
|
|
*> of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF.
|
|
*> See note below for more details about RFP A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
|
*> On entry, the right hand side matrix B.
|
|
*> On exit, the solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> We first consider Rectangular Full Packed (RFP) Format when N is
|
|
*> even. We give an example where N = 6.
|
|
*>
|
|
*> AP is Upper AP is Lower
|
|
*>
|
|
*> 00 01 02 03 04 05 00
|
|
*> 11 12 13 14 15 10 11
|
|
*> 22 23 24 25 20 21 22
|
|
*> 33 34 35 30 31 32 33
|
|
*> 44 45 40 41 42 43 44
|
|
*> 55 50 51 52 53 54 55
|
|
*>
|
|
*>
|
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
|
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
|
|
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
|
|
*> the transpose of the first three columns of AP upper.
|
|
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
|
|
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
|
|
*> the transpose of the last three columns of AP lower.
|
|
*> This covers the case N even and TRANSR = 'N'.
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> 03 04 05 33 43 53
|
|
*> 13 14 15 00 44 54
|
|
*> 23 24 25 10 11 55
|
|
*> 33 34 35 20 21 22
|
|
*> 00 44 45 30 31 32
|
|
*> 01 11 55 40 41 42
|
|
*> 02 12 22 50 51 52
|
|
*>
|
|
*> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
|
|
*> transpose of RFP A above. One therefore gets:
|
|
*>
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
|
|
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
|
|
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
|
|
*>
|
|
*>
|
|
*> We then consider Rectangular Full Packed (RFP) Format when N is
|
|
*> odd. We give an example where N = 5.
|
|
*>
|
|
*> AP is Upper AP is Lower
|
|
*>
|
|
*> 00 01 02 03 04 00
|
|
*> 11 12 13 14 10 11
|
|
*> 22 23 24 20 21 22
|
|
*> 33 34 30 31 32 33
|
|
*> 44 40 41 42 43 44
|
|
*>
|
|
*>
|
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
|
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
|
|
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
|
|
*> the transpose of the first two columns of AP upper.
|
|
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
|
|
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
|
|
*> the transpose of the last two columns of AP lower.
|
|
*> This covers the case N odd and TRANSR = 'N'.
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> 02 03 04 00 33 43
|
|
*> 12 13 14 10 11 44
|
|
*> 22 23 24 20 21 22
|
|
*> 00 33 34 30 31 32
|
|
*> 01 11 44 40 41 42
|
|
*>
|
|
*> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
|
|
*> transpose of RFP A above. One therefore gets:
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> 02 12 22 00 01 00 10 20 30 40 50
|
|
*> 03 13 23 33 11 33 11 21 31 41 51
|
|
*> 04 14 24 34 44 43 44 22 32 42 52
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANSR, UPLO
|
|
INTEGER INFO, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( 0: * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LOWER, NORMALTRANSR
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, DTFSM
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
NORMALTRANSR = LSAME( TRANSR, 'N' )
|
|
LOWER = LSAME( UPLO, 'L' )
|
|
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( NRHS.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DPFTRS', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 .OR. NRHS.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* start execution: there are two triangular solves
|
|
*
|
|
IF( LOWER ) THEN
|
|
CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
|
|
$ LDB )
|
|
CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
|
|
$ LDB )
|
|
ELSE
|
|
CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
|
|
$ LDB )
|
|
CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
|
|
$ LDB )
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DPFTRS
|
|
*
|
|
END
|
|
|