You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
10 KiB
365 lines
10 KiB
*> \brief \b DTPMQRT
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DTPMQRT + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpmqrt.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpmqrt.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpmqrt.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DTPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
|
|
* A, LDA, B, LDB, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER SIDE, TRANS
|
|
* INTEGER INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION V( LDV, * ), A( LDA, * ), B( LDB, * ),
|
|
* $ T( LDT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DTPMQRT applies a real orthogonal matrix Q obtained from a
|
|
*> "triangular-pentagonal" real block reflector H to a general
|
|
*> real matrix C, which consists of two blocks A and B.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> = 'L': apply Q or Q**T from the Left;
|
|
*> = 'R': apply Q or Q**T from the Right.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> = 'N': No transpose, apply Q;
|
|
*> = 'T': Transpose, apply Q**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix B. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of elementary reflectors whose product defines
|
|
*> the matrix Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] L
|
|
*> \verbatim
|
|
*> L is INTEGER
|
|
*> The order of the trapezoidal part of V.
|
|
*> K >= L >= 0. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NB
|
|
*> \verbatim
|
|
*> NB is INTEGER
|
|
*> The block size used for the storage of T. K >= NB >= 1.
|
|
*> This must be the same value of NB used to generate T
|
|
*> in CTPQRT.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] V
|
|
*> \verbatim
|
|
*> V is DOUBLE PRECISION array, dimension (LDV,K)
|
|
*> The i-th column must contain the vector which defines the
|
|
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
|
|
*> CTPQRT in B. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of the array V.
|
|
*> If SIDE = 'L', LDV >= max(1,M);
|
|
*> if SIDE = 'R', LDV >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] T
|
|
*> \verbatim
|
|
*> T is DOUBLE PRECISION array, dimension (LDT,K)
|
|
*> The upper triangular factors of the block reflectors
|
|
*> as returned by CTPQRT, stored as a NB-by-K matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T. LDT >= NB.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension
|
|
*> (LDA,N) if SIDE = 'L' or
|
|
*> (LDA,K) if SIDE = 'R'
|
|
*> On entry, the K-by-N or M-by-K matrix A.
|
|
*> On exit, A is overwritten by the corresponding block of
|
|
*> Q*C or Q**T*C or C*Q or C*Q**T. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A.
|
|
*> If SIDE = 'L', LDC >= max(1,K);
|
|
*> If SIDE = 'R', LDC >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,N)
|
|
*> On entry, the M-by-N matrix B.
|
|
*> On exit, B is overwritten by the corresponding block of
|
|
*> Q*C or Q**T*C or C*Q or C*Q**T. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B.
|
|
*> LDB >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array. The dimension of WORK is
|
|
*> N*NB if SIDE = 'L', or M*NB if SIDE = 'R'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The columns of the pentagonal matrix V contain the elementary reflectors
|
|
*> H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
|
|
*> trapezoidal block V2:
|
|
*>
|
|
*> V = [V1]
|
|
*> [V2].
|
|
*>
|
|
*> The size of the trapezoidal block V2 is determined by the parameter L,
|
|
*> where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
|
|
*> rows of a K-by-K upper triangular matrix. If L=K, V2 is upper triangular;
|
|
*> if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
|
|
*>
|
|
*> If SIDE = 'L': C = [A] where A is K-by-N, B is M-by-N and V is M-by-K.
|
|
*> [B]
|
|
*>
|
|
*> If SIDE = 'R': C = [A B] where A is M-by-K, B is M-by-N and V is N-by-K.
|
|
*>
|
|
*> The real orthogonal matrix Q is formed from V and T.
|
|
*>
|
|
*> If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
|
|
*>
|
|
*> If TRANS='T' and SIDE='L', C is on exit replaced with Q**T * C.
|
|
*>
|
|
*> If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
|
|
*>
|
|
*> If TRANS='T' and SIDE='R', C is on exit replaced with C * Q**T.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DTPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
|
|
$ A, LDA, B, LDB, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER SIDE, TRANS
|
|
INTEGER INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION V( LDV, * ), A( LDA, * ), B( LDB, * ),
|
|
$ T( LDT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LEFT, RIGHT, TRAN, NOTRAN
|
|
INTEGER I, IB, MB, LB, KF, LDAQ, LDVQ
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DTPRFB, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* .. Test the input arguments ..
|
|
*
|
|
INFO = 0
|
|
LEFT = LSAME( SIDE, 'L' )
|
|
RIGHT = LSAME( SIDE, 'R' )
|
|
TRAN = LSAME( TRANS, 'T' )
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
*
|
|
IF ( LEFT ) THEN
|
|
LDVQ = MAX( 1, M )
|
|
LDAQ = MAX( 1, K )
|
|
ELSE IF ( RIGHT ) THEN
|
|
LDVQ = MAX( 1, N )
|
|
LDAQ = MAX( 1, M )
|
|
END IF
|
|
IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
|
|
INFO = -2
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( K.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( L.LT.0 .OR. L.GT.K ) THEN
|
|
INFO = -6
|
|
ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDV.LT.LDVQ ) THEN
|
|
INFO = -9
|
|
ELSE IF( LDT.LT.NB ) THEN
|
|
INFO = -11
|
|
ELSE IF( LDA.LT.LDAQ ) THEN
|
|
INFO = -13
|
|
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
|
|
INFO = -15
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DTPMQRT', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* .. Quick return if possible ..
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
|
|
*
|
|
IF( LEFT .AND. TRAN ) THEN
|
|
*
|
|
DO I = 1, K, NB
|
|
IB = MIN( NB, K-I+1 )
|
|
MB = MIN( M-L+I+IB-1, M )
|
|
IF( I.GE.L ) THEN
|
|
LB = 0
|
|
ELSE
|
|
LB = MB-M+L-I+1
|
|
END IF
|
|
CALL DTPRFB( 'L', 'T', 'F', 'C', MB, N, IB, LB,
|
|
$ V( 1, I ), LDV, T( 1, I ), LDT,
|
|
$ A( I, 1 ), LDA, B, LDB, WORK, IB )
|
|
END DO
|
|
*
|
|
ELSE IF( RIGHT .AND. NOTRAN ) THEN
|
|
*
|
|
DO I = 1, K, NB
|
|
IB = MIN( NB, K-I+1 )
|
|
MB = MIN( N-L+I+IB-1, N )
|
|
IF( I.GE.L ) THEN
|
|
LB = 0
|
|
ELSE
|
|
LB = MB-N+L-I+1
|
|
END IF
|
|
CALL DTPRFB( 'R', 'N', 'F', 'C', M, MB, IB, LB,
|
|
$ V( 1, I ), LDV, T( 1, I ), LDT,
|
|
$ A( 1, I ), LDA, B, LDB, WORK, M )
|
|
END DO
|
|
*
|
|
ELSE IF( LEFT .AND. NOTRAN ) THEN
|
|
*
|
|
KF = ((K-1)/NB)*NB+1
|
|
DO I = KF, 1, -NB
|
|
IB = MIN( NB, K-I+1 )
|
|
MB = MIN( M-L+I+IB-1, M )
|
|
IF( I.GE.L ) THEN
|
|
LB = 0
|
|
ELSE
|
|
LB = MB-M+L-I+1
|
|
END IF
|
|
CALL DTPRFB( 'L', 'N', 'F', 'C', MB, N, IB, LB,
|
|
$ V( 1, I ), LDV, T( 1, I ), LDT,
|
|
$ A( I, 1 ), LDA, B, LDB, WORK, IB )
|
|
END DO
|
|
*
|
|
ELSE IF( RIGHT .AND. TRAN ) THEN
|
|
*
|
|
KF = ((K-1)/NB)*NB+1
|
|
DO I = KF, 1, -NB
|
|
IB = MIN( NB, K-I+1 )
|
|
MB = MIN( N-L+I+IB-1, N )
|
|
IF( I.GE.L ) THEN
|
|
LB = 0
|
|
ELSE
|
|
LB = MB-N+L-I+1
|
|
END IF
|
|
CALL DTPRFB( 'R', 'T', 'F', 'C', M, MB, IB, LB,
|
|
$ V( 1, I ), LDV, T( 1, I ), LDT,
|
|
$ A( 1, I ), LDA, B, LDB, WORK, M )
|
|
END DO
|
|
*
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DTPMQRT
|
|
*
|
|
END
|
|
|