You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
567 lines
18 KiB
567 lines
18 KiB
*> \brief \b DTRSEN
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DTRSEN + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
|
|
* M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER COMPQ, JOB
|
|
* INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
|
|
* DOUBLE PRECISION S, SEP
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL SELECT( * )
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
|
|
* $ WR( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DTRSEN reorders the real Schur factorization of a real matrix
|
|
*> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
|
|
*> the leading diagonal blocks of the upper quasi-triangular matrix T,
|
|
*> and the leading columns of Q form an orthonormal basis of the
|
|
*> corresponding right invariant subspace.
|
|
*>
|
|
*> Optionally the routine computes the reciprocal condition numbers of
|
|
*> the cluster of eigenvalues and/or the invariant subspace.
|
|
*>
|
|
*> T must be in Schur canonical form (as returned by DHSEQR), that is,
|
|
*> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
|
|
*> 2-by-2 diagonal block has its diagonal elements equal and its
|
|
*> off-diagonal elements of opposite sign.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOB
|
|
*> \verbatim
|
|
*> JOB is CHARACTER*1
|
|
*> Specifies whether condition numbers are required for the
|
|
*> cluster of eigenvalues (S) or the invariant subspace (SEP):
|
|
*> = 'N': none;
|
|
*> = 'E': for eigenvalues only (S);
|
|
*> = 'V': for invariant subspace only (SEP);
|
|
*> = 'B': for both eigenvalues and invariant subspace (S and
|
|
*> SEP).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] COMPQ
|
|
*> \verbatim
|
|
*> COMPQ is CHARACTER*1
|
|
*> = 'V': update the matrix Q of Schur vectors;
|
|
*> = 'N': do not update Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SELECT
|
|
*> \verbatim
|
|
*> SELECT is LOGICAL array, dimension (N)
|
|
*> SELECT specifies the eigenvalues in the selected cluster. To
|
|
*> select a real eigenvalue w(j), SELECT(j) must be set to
|
|
*> .TRUE.. To select a complex conjugate pair of eigenvalues
|
|
*> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
|
|
*> either SELECT(j) or SELECT(j+1) or both must be set to
|
|
*> .TRUE.; a complex conjugate pair of eigenvalues must be
|
|
*> either both included in the cluster or both excluded.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix T. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] T
|
|
*> \verbatim
|
|
*> T is DOUBLE PRECISION array, dimension (LDT,N)
|
|
*> On entry, the upper quasi-triangular matrix T, in Schur
|
|
*> canonical form.
|
|
*> On exit, T is overwritten by the reordered matrix T, again in
|
|
*> Schur canonical form, with the selected eigenvalues in the
|
|
*> leading diagonal blocks.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T. LDT >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
|
|
*> On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
|
|
*> On exit, if COMPQ = 'V', Q has been postmultiplied by the
|
|
*> orthogonal transformation matrix which reorders T; the
|
|
*> leading M columns of Q form an orthonormal basis for the
|
|
*> specified invariant subspace.
|
|
*> If COMPQ = 'N', Q is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q.
|
|
*> LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WR
|
|
*> \verbatim
|
|
*> WR is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*> \param[out] WI
|
|
*> \verbatim
|
|
*> WI is DOUBLE PRECISION array, dimension (N)
|
|
*>
|
|
*> The real and imaginary parts, respectively, of the reordered
|
|
*> eigenvalues of T. The eigenvalues are stored in the same
|
|
*> order as on the diagonal of T, with WR(i) = T(i,i) and, if
|
|
*> T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
|
|
*> WI(i+1) = -WI(i). Note that if a complex eigenvalue is
|
|
*> sufficiently ill-conditioned, then its value may differ
|
|
*> significantly from its value before reordering.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The dimension of the specified invariant subspace.
|
|
*> 0 < = M <= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is DOUBLE PRECISION
|
|
*> If JOB = 'E' or 'B', S is a lower bound on the reciprocal
|
|
*> condition number for the selected cluster of eigenvalues.
|
|
*> S cannot underestimate the true reciprocal condition number
|
|
*> by more than a factor of sqrt(N). If M = 0 or N, S = 1.
|
|
*> If JOB = 'N' or 'V', S is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SEP
|
|
*> \verbatim
|
|
*> SEP is DOUBLE PRECISION
|
|
*> If JOB = 'V' or 'B', SEP is the estimated reciprocal
|
|
*> condition number of the specified invariant subspace. If
|
|
*> M = 0 or N, SEP = norm(T).
|
|
*> If JOB = 'N' or 'E', SEP is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK.
|
|
*> If JOB = 'N', LWORK >= max(1,N);
|
|
*> if JOB = 'E', LWORK >= max(1,M*(N-M));
|
|
*> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
|
|
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LIWORK
|
|
*> \verbatim
|
|
*> LIWORK is INTEGER
|
|
*> The dimension of the array IWORK.
|
|
*> If JOB = 'N' or 'E', LIWORK >= 1;
|
|
*> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
|
|
*>
|
|
*> If LIWORK = -1, then a workspace query is assumed; the
|
|
*> routine only calculates the optimal size of the IWORK array,
|
|
*> returns this value as the first entry of the IWORK array, and
|
|
*> no error message related to LIWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> = 1: reordering of T failed because some eigenvalues are too
|
|
*> close to separate (the problem is very ill-conditioned);
|
|
*> T may have been partially reordered, and WR and WI
|
|
*> contain the eigenvalues in the same order as in T; S and
|
|
*> SEP (if requested) are set to zero.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DTRSEN first collects the selected eigenvalues by computing an
|
|
*> orthogonal transformation Z to move them to the top left corner of T.
|
|
*> In other words, the selected eigenvalues are the eigenvalues of T11
|
|
*> in:
|
|
*>
|
|
*> Z**T * T * Z = ( T11 T12 ) n1
|
|
*> ( 0 T22 ) n2
|
|
*> n1 n2
|
|
*>
|
|
*> where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
|
|
*> of Z span the specified invariant subspace of T.
|
|
*>
|
|
*> If T has been obtained from the real Schur factorization of a matrix
|
|
*> A = Q*T*Q**T, then the reordered real Schur factorization of A is given
|
|
*> by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
|
|
*> the corresponding invariant subspace of A.
|
|
*>
|
|
*> The reciprocal condition number of the average of the eigenvalues of
|
|
*> T11 may be returned in S. S lies between 0 (very badly conditioned)
|
|
*> and 1 (very well conditioned). It is computed as follows. First we
|
|
*> compute R so that
|
|
*>
|
|
*> P = ( I R ) n1
|
|
*> ( 0 0 ) n2
|
|
*> n1 n2
|
|
*>
|
|
*> is the projector on the invariant subspace associated with T11.
|
|
*> R is the solution of the Sylvester equation:
|
|
*>
|
|
*> T11*R - R*T22 = T12.
|
|
*>
|
|
*> Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
|
|
*> the two-norm of M. Then S is computed as the lower bound
|
|
*>
|
|
*> (1 + F-norm(R)**2)**(-1/2)
|
|
*>
|
|
*> on the reciprocal of 2-norm(P), the true reciprocal condition number.
|
|
*> S cannot underestimate 1 / 2-norm(P) by more than a factor of
|
|
*> sqrt(N).
|
|
*>
|
|
*> An approximate error bound for the computed average of the
|
|
*> eigenvalues of T11 is
|
|
*>
|
|
*> EPS * norm(T) / S
|
|
*>
|
|
*> where EPS is the machine precision.
|
|
*>
|
|
*> The reciprocal condition number of the right invariant subspace
|
|
*> spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
|
|
*> SEP is defined as the separation of T11 and T22:
|
|
*>
|
|
*> sep( T11, T22 ) = sigma-min( C )
|
|
*>
|
|
*> where sigma-min(C) is the smallest singular value of the
|
|
*> n1*n2-by-n1*n2 matrix
|
|
*>
|
|
*> C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
|
|
*>
|
|
*> I(m) is an m by m identity matrix, and kprod denotes the Kronecker
|
|
*> product. We estimate sigma-min(C) by the reciprocal of an estimate of
|
|
*> the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
|
|
*> cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
|
|
*>
|
|
*> When SEP is small, small changes in T can cause large changes in
|
|
*> the invariant subspace. An approximate bound on the maximum angular
|
|
*> error in the computed right invariant subspace is
|
|
*>
|
|
*> EPS * norm(T) / SEP
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
|
|
$ M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER COMPQ, JOB
|
|
INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
|
|
DOUBLE PRECISION S, SEP
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL SELECT( * )
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
|
|
$ WR( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
|
|
$ WANTSP
|
|
INTEGER IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
|
|
$ NN
|
|
DOUBLE PRECISION EST, RNORM, SCALE
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER ISAVE( 3 )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
DOUBLE PRECISION DLANGE
|
|
EXTERNAL LSAME, DLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode and test the input parameters
|
|
*
|
|
WANTBH = LSAME( JOB, 'B' )
|
|
WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
|
|
WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
|
|
WANTQ = LSAME( COMPQ, 'V' )
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
|
|
$ THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
|
|
INFO = -8
|
|
ELSE
|
|
*
|
|
* Set M to the dimension of the specified invariant subspace,
|
|
* and test LWORK and LIWORK.
|
|
*
|
|
M = 0
|
|
PAIR = .FALSE.
|
|
DO 10 K = 1, N
|
|
IF( PAIR ) THEN
|
|
PAIR = .FALSE.
|
|
ELSE
|
|
IF( K.LT.N ) THEN
|
|
IF( T( K+1, K ).EQ.ZERO ) THEN
|
|
IF( SELECT( K ) )
|
|
$ M = M + 1
|
|
ELSE
|
|
PAIR = .TRUE.
|
|
IF( SELECT( K ) .OR. SELECT( K+1 ) )
|
|
$ M = M + 2
|
|
END IF
|
|
ELSE
|
|
IF( SELECT( N ) )
|
|
$ M = M + 1
|
|
END IF
|
|
END IF
|
|
10 CONTINUE
|
|
*
|
|
N1 = M
|
|
N2 = N - M
|
|
NN = N1*N2
|
|
*
|
|
IF( WANTSP ) THEN
|
|
LWMIN = MAX( 1, 2*NN )
|
|
LIWMIN = MAX( 1, NN )
|
|
ELSE IF( LSAME( JOB, 'N' ) ) THEN
|
|
LWMIN = MAX( 1, N )
|
|
LIWMIN = 1
|
|
ELSE IF( LSAME( JOB, 'E' ) ) THEN
|
|
LWMIN = MAX( 1, NN )
|
|
LIWMIN = 1
|
|
END IF
|
|
*
|
|
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -15
|
|
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -17
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
WORK( 1 ) = LWMIN
|
|
IWORK( 1 ) = LIWMIN
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DTRSEN', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( M.EQ.N .OR. M.EQ.0 ) THEN
|
|
IF( WANTS )
|
|
$ S = ONE
|
|
IF( WANTSP )
|
|
$ SEP = DLANGE( '1', N, N, T, LDT, WORK )
|
|
GO TO 40
|
|
END IF
|
|
*
|
|
* Collect the selected blocks at the top-left corner of T.
|
|
*
|
|
KS = 0
|
|
PAIR = .FALSE.
|
|
DO 20 K = 1, N
|
|
IF( PAIR ) THEN
|
|
PAIR = .FALSE.
|
|
ELSE
|
|
SWAP = SELECT( K )
|
|
IF( K.LT.N ) THEN
|
|
IF( T( K+1, K ).NE.ZERO ) THEN
|
|
PAIR = .TRUE.
|
|
SWAP = SWAP .OR. SELECT( K+1 )
|
|
END IF
|
|
END IF
|
|
IF( SWAP ) THEN
|
|
KS = KS + 1
|
|
*
|
|
* Swap the K-th block to position KS.
|
|
*
|
|
IERR = 0
|
|
KK = K
|
|
IF( K.NE.KS )
|
|
$ CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
|
|
$ IERR )
|
|
IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
|
|
*
|
|
* Blocks too close to swap: exit.
|
|
*
|
|
INFO = 1
|
|
IF( WANTS )
|
|
$ S = ZERO
|
|
IF( WANTSP )
|
|
$ SEP = ZERO
|
|
GO TO 40
|
|
END IF
|
|
IF( PAIR )
|
|
$ KS = KS + 1
|
|
END IF
|
|
END IF
|
|
20 CONTINUE
|
|
*
|
|
IF( WANTS ) THEN
|
|
*
|
|
* Solve Sylvester equation for R:
|
|
*
|
|
* T11*R - R*T22 = scale*T12
|
|
*
|
|
CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
|
|
CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
|
|
$ LDT, WORK, N1, SCALE, IERR )
|
|
*
|
|
* Estimate the reciprocal of the condition number of the cluster
|
|
* of eigenvalues.
|
|
*
|
|
RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
|
|
IF( RNORM.EQ.ZERO ) THEN
|
|
S = ONE
|
|
ELSE
|
|
S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
|
|
$ SQRT( RNORM ) )
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( WANTSP ) THEN
|
|
*
|
|
* Estimate sep(T11,T22).
|
|
*
|
|
EST = ZERO
|
|
KASE = 0
|
|
30 CONTINUE
|
|
CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
|
|
IF( KASE.NE.0 ) THEN
|
|
IF( KASE.EQ.1 ) THEN
|
|
*
|
|
* Solve T11*R - R*T22 = scale*X.
|
|
*
|
|
CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
|
|
$ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
|
|
$ IERR )
|
|
ELSE
|
|
*
|
|
* Solve T11**T*R - R*T22**T = scale*X.
|
|
*
|
|
CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
|
|
$ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
|
|
$ IERR )
|
|
END IF
|
|
GO TO 30
|
|
END IF
|
|
*
|
|
SEP = SCALE / EST
|
|
END IF
|
|
*
|
|
40 CONTINUE
|
|
*
|
|
* Store the output eigenvalues in WR and WI.
|
|
*
|
|
DO 50 K = 1, N
|
|
WR( K ) = T( K, K )
|
|
WI( K ) = ZERO
|
|
50 CONTINUE
|
|
DO 60 K = 1, N - 1
|
|
IF( T( K+1, K ).NE.ZERO ) THEN
|
|
WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
|
|
$ SQRT( ABS( T( K+1, K ) ) )
|
|
WI( K+1 ) = -WI( K )
|
|
END IF
|
|
60 CONTINUE
|
|
*
|
|
WORK( 1 ) = LWMIN
|
|
IWORK( 1 ) = LIWMIN
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DTRSEN
|
|
*
|
|
END
|
|
|