You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
271 lines
7.7 KiB
271 lines
7.7 KiB
*> \brief \b SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SGTTS2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtts2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtts2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtts2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER ITRANS, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* REAL B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGTTS2 solves one of the systems of equations
|
|
*> A*X = B or A**T*X = B,
|
|
*> with a tridiagonal matrix A using the LU factorization computed
|
|
*> by SGTTRF.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ITRANS
|
|
*> \verbatim
|
|
*> ITRANS is INTEGER
|
|
*> Specifies the form of the system of equations.
|
|
*> = 0: A * X = B (No transpose)
|
|
*> = 1: A**T* X = B (Transpose)
|
|
*> = 2: A**T* X = B (Conjugate transpose = Transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrix B. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DL
|
|
*> \verbatim
|
|
*> DL is REAL array, dimension (N-1)
|
|
*> The (n-1) multipliers that define the matrix L from the
|
|
*> LU factorization of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> The n diagonal elements of the upper triangular matrix U from
|
|
*> the LU factorization of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DU
|
|
*> \verbatim
|
|
*> DU is REAL array, dimension (N-1)
|
|
*> The (n-1) elements of the first super-diagonal of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DU2
|
|
*> \verbatim
|
|
*> DU2 is REAL array, dimension (N-2)
|
|
*> The (n-2) elements of the second super-diagonal of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> The pivot indices; for 1 <= i <= n, row i of the matrix was
|
|
*> interchanged with row IPIV(i). IPIV(i) will always be either
|
|
*> i or i+1; IPIV(i) = i indicates a row interchange was not
|
|
*> required.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB,NRHS)
|
|
*> On entry, the matrix of right hand side vectors B.
|
|
*> On exit, B is overwritten by the solution vectors X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realGTcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER ITRANS, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
REAL B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER I, IP, J
|
|
REAL TEMP
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 .OR. NRHS.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( ITRANS.EQ.0 ) THEN
|
|
*
|
|
* Solve A*X = B using the LU factorization of A,
|
|
* overwriting each right hand side vector with its solution.
|
|
*
|
|
IF( NRHS.LE.1 ) THEN
|
|
J = 1
|
|
10 CONTINUE
|
|
*
|
|
* Solve L*x = b.
|
|
*
|
|
DO 20 I = 1, N - 1
|
|
IP = IPIV( I )
|
|
TEMP = B( I+1-IP+I, J ) - DL( I )*B( IP, J )
|
|
B( I, J ) = B( IP, J )
|
|
B( I+1, J ) = TEMP
|
|
20 CONTINUE
|
|
*
|
|
* Solve U*x = b.
|
|
*
|
|
B( N, J ) = B( N, J ) / D( N )
|
|
IF( N.GT.1 )
|
|
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
|
|
$ D( N-1 )
|
|
DO 30 I = N - 2, 1, -1
|
|
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
|
|
$ B( I+2, J ) ) / D( I )
|
|
30 CONTINUE
|
|
IF( J.LT.NRHS ) THEN
|
|
J = J + 1
|
|
GO TO 10
|
|
END IF
|
|
ELSE
|
|
DO 60 J = 1, NRHS
|
|
*
|
|
* Solve L*x = b.
|
|
*
|
|
DO 40 I = 1, N - 1
|
|
IF( IPIV( I ).EQ.I ) THEN
|
|
B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
|
|
ELSE
|
|
TEMP = B( I, J )
|
|
B( I, J ) = B( I+1, J )
|
|
B( I+1, J ) = TEMP - DL( I )*B( I, J )
|
|
END IF
|
|
40 CONTINUE
|
|
*
|
|
* Solve U*x = b.
|
|
*
|
|
B( N, J ) = B( N, J ) / D( N )
|
|
IF( N.GT.1 )
|
|
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
|
|
$ D( N-1 )
|
|
DO 50 I = N - 2, 1, -1
|
|
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
|
|
$ B( I+2, J ) ) / D( I )
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Solve A**T * X = B.
|
|
*
|
|
IF( NRHS.LE.1 ) THEN
|
|
*
|
|
* Solve U**T*x = b.
|
|
*
|
|
J = 1
|
|
70 CONTINUE
|
|
B( 1, J ) = B( 1, J ) / D( 1 )
|
|
IF( N.GT.1 )
|
|
$ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
|
|
DO 80 I = 3, N
|
|
B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
|
|
$ B( I-2, J ) ) / D( I )
|
|
80 CONTINUE
|
|
*
|
|
* Solve L**T*x = b.
|
|
*
|
|
DO 90 I = N - 1, 1, -1
|
|
IP = IPIV( I )
|
|
TEMP = B( I, J ) - DL( I )*B( I+1, J )
|
|
B( I, J ) = B( IP, J )
|
|
B( IP, J ) = TEMP
|
|
90 CONTINUE
|
|
IF( J.LT.NRHS ) THEN
|
|
J = J + 1
|
|
GO TO 70
|
|
END IF
|
|
*
|
|
ELSE
|
|
DO 120 J = 1, NRHS
|
|
*
|
|
* Solve U**T*x = b.
|
|
*
|
|
B( 1, J ) = B( 1, J ) / D( 1 )
|
|
IF( N.GT.1 )
|
|
$ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
|
|
DO 100 I = 3, N
|
|
B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
|
|
$ DU2( I-2 )*B( I-2, J ) ) / D( I )
|
|
100 CONTINUE
|
|
DO 110 I = N - 1, 1, -1
|
|
IF( IPIV( I ).EQ.I ) THEN
|
|
B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
|
|
ELSE
|
|
TEMP = B( I+1, J )
|
|
B( I+1, J ) = B( I, J ) - DL( I )*TEMP
|
|
B( I, J ) = TEMP
|
|
END IF
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* End of SGTTS2
|
|
*
|
|
END
|
|
|