Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

272 lines
6.8 KiB

*> \brief \b SLACON estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLACON + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slacon.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slacon.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slacon.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLACON( N, V, X, ISGN, EST, KASE )
*
* .. Scalar Arguments ..
* INTEGER KASE, N
* REAL EST
* ..
* .. Array Arguments ..
* INTEGER ISGN( * )
* REAL V( * ), X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLACON estimates the 1-norm of a square, real matrix A.
*> Reverse communication is used for evaluating matrix-vector products.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix. N >= 1.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is REAL array, dimension (N)
*> On the final return, V = A*W, where EST = norm(V)/norm(W)
*> (W is not returned).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is REAL array, dimension (N)
*> On an intermediate return, X should be overwritten by
*> A * X, if KASE=1,
*> A**T * X, if KASE=2,
*> and SLACON must be re-called with all the other parameters
*> unchanged.
*> \endverbatim
*>
*> \param[out] ISGN
*> \verbatim
*> ISGN is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[in,out] EST
*> \verbatim
*> EST is REAL
*> On entry with KASE = 1 or 2 and JUMP = 3, EST should be
*> unchanged from the previous call to SLACON.
*> On exit, EST is an estimate (a lower bound) for norm(A).
*> \endverbatim
*>
*> \param[in,out] KASE
*> \verbatim
*> KASE is INTEGER
*> On the initial call to SLACON, KASE should be 0.
*> On an intermediate return, KASE will be 1 or 2, indicating
*> whether X should be overwritten by A * X or A**T * X.
*> On the final return from SLACON, KASE will again be 0.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realOTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Nick Higham, University of Manchester. \n
*> Originally named SONEST, dated March 16, 1988.
*
*> \par References:
* ================
*>
*> N.J. Higham, "FORTRAN codes for estimating the one-norm of
*> a real or complex matrix, with applications to condition estimation",
*> ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
*>
* =====================================================================
SUBROUTINE SLACON( N, V, X, ISGN, EST, KASE )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER KASE, N
REAL EST
* ..
* .. Array Arguments ..
INTEGER ISGN( * )
REAL V( * ), X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER ITMAX
PARAMETER ( ITMAX = 5 )
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, ITER, J, JLAST, JUMP
REAL ALTSGN, ESTOLD, TEMP
* ..
* .. External Functions ..
INTEGER ISAMAX
REAL SASUM
EXTERNAL ISAMAX, SASUM
* ..
* .. External Subroutines ..
EXTERNAL SCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, NINT, REAL, SIGN
* ..
* .. Save statement ..
SAVE
* ..
* .. Executable Statements ..
*
IF( KASE.EQ.0 ) THEN
DO 10 I = 1, N
X( I ) = ONE / REAL( N )
10 CONTINUE
KASE = 1
JUMP = 1
RETURN
END IF
*
GO TO ( 20, 40, 70, 110, 140 )JUMP
*
* ................ ENTRY (JUMP = 1)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
*
20 CONTINUE
IF( N.EQ.1 ) THEN
V( 1 ) = X( 1 )
EST = ABS( V( 1 ) )
* ... QUIT
GO TO 150
END IF
EST = SASUM( N, X, 1 )
*
DO 30 I = 1, N
X( I ) = SIGN( ONE, X( I ) )
ISGN( I ) = NINT( X( I ) )
30 CONTINUE
KASE = 2
JUMP = 2
RETURN
*
* ................ ENTRY (JUMP = 2)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
*
40 CONTINUE
J = ISAMAX( N, X, 1 )
ITER = 2
*
* MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
*
50 CONTINUE
DO 60 I = 1, N
X( I ) = ZERO
60 CONTINUE
X( J ) = ONE
KASE = 1
JUMP = 3
RETURN
*
* ................ ENTRY (JUMP = 3)
* X HAS BEEN OVERWRITTEN BY A*X.
*
70 CONTINUE
CALL SCOPY( N, X, 1, V, 1 )
ESTOLD = EST
EST = SASUM( N, V, 1 )
DO 80 I = 1, N
IF( NINT( SIGN( ONE, X( I ) ) ).NE.ISGN( I ) )
$ GO TO 90
80 CONTINUE
* REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
GO TO 120
*
90 CONTINUE
* TEST FOR CYCLING.
IF( EST.LE.ESTOLD )
$ GO TO 120
*
DO 100 I = 1, N
X( I ) = SIGN( ONE, X( I ) )
ISGN( I ) = NINT( X( I ) )
100 CONTINUE
KASE = 2
JUMP = 4
RETURN
*
* ................ ENTRY (JUMP = 4)
* X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
*
110 CONTINUE
JLAST = J
J = ISAMAX( N, X, 1 )
IF( ( X( JLAST ).NE.ABS( X( J ) ) ) .AND. ( ITER.LT.ITMAX ) ) THEN
ITER = ITER + 1
GO TO 50
END IF
*
* ITERATION COMPLETE. FINAL STAGE.
*
120 CONTINUE
ALTSGN = ONE
DO 130 I = 1, N
X( I ) = ALTSGN*( ONE+REAL( I-1 ) / REAL( N-1 ) )
ALTSGN = -ALTSGN
130 CONTINUE
KASE = 1
JUMP = 5
RETURN
*
* ................ ENTRY (JUMP = 5)
* X HAS BEEN OVERWRITTEN BY A*X.
*
140 CONTINUE
TEMP = TWO*( SASUM( N, X, 1 ) / REAL( 3*N ) )
IF( TEMP.GT.EST ) THEN
CALL SCOPY( N, X, 1, V, 1 )
EST = TEMP
END IF
*
150 CONTINUE
KASE = 0
RETURN
*
* End of SLACON
*
END