You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
5.8 KiB
208 lines
5.8 KiB
*> \brief \b SLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SLARRR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLARRR( N, D, E, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER N, INFO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL D( * ), E( * )
|
|
* ..
|
|
*
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Perform tests to decide whether the symmetric tridiagonal matrix T
|
|
*> warrants expensive computations which guarantee high relative accuracy
|
|
*> in the eigenvalues.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix. N > 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> The N diagonal elements of the tridiagonal matrix T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (N)
|
|
*> On entry, the first (N-1) entries contain the subdiagonal
|
|
*> elements of the tridiagonal matrix T; E(N) is set to ZERO.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> INFO = 0(default) : the matrix warrants computations preserving
|
|
*> relative accuracy.
|
|
*> INFO = 1 : the matrix warrants computations guaranteeing
|
|
*> only absolute accuracy.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Beresford Parlett, University of California, Berkeley, USA \n
|
|
*> Jim Demmel, University of California, Berkeley, USA \n
|
|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
|
|
*> Osni Marques, LBNL/NERSC, USA \n
|
|
*> Christof Voemel, University of California, Berkeley, USA
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SLARRR( N, D, E, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER N, INFO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL D( * ), E( * )
|
|
* ..
|
|
*
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, RELCOND
|
|
PARAMETER ( ZERO = 0.0E0,
|
|
$ RELCOND = 0.999E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I
|
|
LOGICAL YESREL
|
|
REAL EPS, SAFMIN, SMLNUM, RMIN, TMP, TMP2,
|
|
$ OFFDIG, OFFDIG2
|
|
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH
|
|
EXTERNAL SLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
INFO = 0
|
|
RETURN
|
|
END IF
|
|
*
|
|
* As a default, do NOT go for relative-accuracy preserving computations.
|
|
INFO = 1
|
|
|
|
SAFMIN = SLAMCH( 'Safe minimum' )
|
|
EPS = SLAMCH( 'Precision' )
|
|
SMLNUM = SAFMIN / EPS
|
|
RMIN = SQRT( SMLNUM )
|
|
|
|
* Tests for relative accuracy
|
|
*
|
|
* Test for scaled diagonal dominance
|
|
* Scale the diagonal entries to one and check whether the sum of the
|
|
* off-diagonals is less than one
|
|
*
|
|
* The sdd relative error bounds have a 1/(1- 2*x) factor in them,
|
|
* x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative
|
|
* accuracy is promised. In the notation of the code fragment below,
|
|
* 1/(1 - (OFFDIG + OFFDIG2)) is the condition number.
|
|
* We don't think it is worth going into "sdd mode" unless the relative
|
|
* condition number is reasonable, not 1/macheps.
|
|
* The threshold should be compatible with other thresholds used in the
|
|
* code. We set OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds
|
|
* to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000
|
|
* instead of the current OFFDIG + OFFDIG2 < 1
|
|
*
|
|
YESREL = .TRUE.
|
|
OFFDIG = ZERO
|
|
TMP = SQRT(ABS(D(1)))
|
|
IF (TMP.LT.RMIN) YESREL = .FALSE.
|
|
IF(.NOT.YESREL) GOTO 11
|
|
DO 10 I = 2, N
|
|
TMP2 = SQRT(ABS(D(I)))
|
|
IF (TMP2.LT.RMIN) YESREL = .FALSE.
|
|
IF(.NOT.YESREL) GOTO 11
|
|
OFFDIG2 = ABS(E(I-1))/(TMP*TMP2)
|
|
IF(OFFDIG+OFFDIG2.GE.RELCOND) YESREL = .FALSE.
|
|
IF(.NOT.YESREL) GOTO 11
|
|
TMP = TMP2
|
|
OFFDIG = OFFDIG2
|
|
10 CONTINUE
|
|
11 CONTINUE
|
|
|
|
IF( YESREL ) THEN
|
|
INFO = 0
|
|
RETURN
|
|
ELSE
|
|
ENDIF
|
|
*
|
|
|
|
*
|
|
* *** MORE TO BE IMPLEMENTED ***
|
|
*
|
|
|
|
*
|
|
* Test if the lower bidiagonal matrix L from T = L D L^T
|
|
* (zero shift facto) is well conditioned
|
|
*
|
|
|
|
*
|
|
* Test if the upper bidiagonal matrix U from T = U D U^T
|
|
* (zero shift facto) is well conditioned.
|
|
* In this case, the matrix needs to be flipped and, at the end
|
|
* of the eigenvector computation, the flip needs to be applied
|
|
* to the computed eigenvectors (and the support)
|
|
*
|
|
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SLARRR
|
|
*
|
|
END
|
|
|