You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
592 lines
17 KiB
592 lines
17 KiB
*> \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SLASQ2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLASQ2( N, Z, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL Z( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLASQ2 computes all the eigenvalues of the symmetric positive
|
|
*> definite tridiagonal matrix associated with the qd array Z to high
|
|
*> relative accuracy are computed to high relative accuracy, in the
|
|
*> absence of denormalization, underflow and overflow.
|
|
*>
|
|
*> To see the relation of Z to the tridiagonal matrix, let L be a
|
|
*> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
|
|
*> let U be an upper bidiagonal matrix with 1's above and diagonal
|
|
*> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
|
|
*> symmetric tridiagonal to which it is similar.
|
|
*>
|
|
*> Note : SLASQ2 defines a logical variable, IEEE, which is true
|
|
*> on machines which follow ieee-754 floating-point standard in their
|
|
*> handling of infinities and NaNs, and false otherwise. This variable
|
|
*> is passed to SLASQ3.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of rows and columns in the matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is REAL array, dimension ( 4*N )
|
|
*> On entry Z holds the qd array. On exit, entries 1 to N hold
|
|
*> the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
|
|
*> trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
|
|
*> N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
|
|
*> holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
|
|
*> shifts that failed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if the i-th argument is a scalar and had an illegal
|
|
*> value, then INFO = -i, if the i-th argument is an
|
|
*> array and the j-entry had an illegal value, then
|
|
*> INFO = -(i*100+j)
|
|
*> > 0: the algorithm failed
|
|
*> = 1, a split was marked by a positive value in E
|
|
*> = 2, current block of Z not diagonalized after 100*N
|
|
*> iterations (in inner while loop). On exit Z holds
|
|
*> a qd array with the same eigenvalues as the given Z.
|
|
*> = 3, termination criterion of outer while loop not met
|
|
*> (program created more than N unreduced blocks)
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Local Variables: I0:N0 defines a current unreduced segment of Z.
|
|
*> The shifts are accumulated in SIGMA. Iteration count is in ITER.
|
|
*> Ping-pong is controlled by PP (alternates between 0 and 1).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SLASQ2( N, Z, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL Z( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL CBIAS
|
|
PARAMETER ( CBIAS = 1.50E0 )
|
|
REAL ZERO, HALF, ONE, TWO, FOUR, HUNDRD
|
|
PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
|
|
$ TWO = 2.0E0, FOUR = 4.0E0, HUNDRD = 100.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL IEEE
|
|
INTEGER I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,
|
|
$ KMIN, N0, NBIG, NDIV, NFAIL, PP, SPLT, TTYPE,
|
|
$ I1, N1
|
|
REAL D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
|
|
$ DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
|
|
$ QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
|
|
$ TOL2, TRACE, ZMAX, TEMPE, TEMPQ
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SLASQ3, SLASRT, XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH
|
|
EXTERNAL SLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, REAL, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments.
|
|
* (in case SLASQ2 is not called by SLASQ1)
|
|
*
|
|
INFO = 0
|
|
EPS = SLAMCH( 'Precision' )
|
|
SAFMIN = SLAMCH( 'Safe minimum' )
|
|
TOL = EPS*HUNDRD
|
|
TOL2 = TOL**2
|
|
*
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
CALL XERBLA( 'SLASQ2', 1 )
|
|
RETURN
|
|
ELSE IF( N.EQ.0 ) THEN
|
|
RETURN
|
|
ELSE IF( N.EQ.1 ) THEN
|
|
*
|
|
* 1-by-1 case.
|
|
*
|
|
IF( Z( 1 ).LT.ZERO ) THEN
|
|
INFO = -201
|
|
CALL XERBLA( 'SLASQ2', 2 )
|
|
END IF
|
|
RETURN
|
|
ELSE IF( N.EQ.2 ) THEN
|
|
*
|
|
* 2-by-2 case.
|
|
*
|
|
IF( Z( 1 ).LT.ZERO ) THEN
|
|
INFO = -201
|
|
CALL XERBLA( 'SLASQ2', 2 )
|
|
RETURN
|
|
ELSE IF( Z( 2 ).LT.ZERO ) THEN
|
|
INFO = -202
|
|
CALL XERBLA( 'SLASQ2', 2 )
|
|
RETURN
|
|
ELSE IF( Z( 3 ).LT.ZERO ) THEN
|
|
INFO = -203
|
|
CALL XERBLA( 'SLASQ2', 2 )
|
|
RETURN
|
|
ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
|
|
D = Z( 3 )
|
|
Z( 3 ) = Z( 1 )
|
|
Z( 1 ) = D
|
|
END IF
|
|
Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
|
|
IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
|
|
T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) )
|
|
S = Z( 3 )*( Z( 2 ) / T )
|
|
IF( S.LE.T ) THEN
|
|
S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
|
|
ELSE
|
|
S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
|
|
END IF
|
|
T = Z( 1 ) + ( S+Z( 2 ) )
|
|
Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
|
|
Z( 1 ) = T
|
|
END IF
|
|
Z( 2 ) = Z( 3 )
|
|
Z( 6 ) = Z( 2 ) + Z( 1 )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Check for negative data and compute sums of q's and e's.
|
|
*
|
|
Z( 2*N ) = ZERO
|
|
EMIN = Z( 2 )
|
|
QMAX = ZERO
|
|
ZMAX = ZERO
|
|
D = ZERO
|
|
E = ZERO
|
|
*
|
|
DO 10 K = 1, 2*( N-1 ), 2
|
|
IF( Z( K ).LT.ZERO ) THEN
|
|
INFO = -( 200+K )
|
|
CALL XERBLA( 'SLASQ2', 2 )
|
|
RETURN
|
|
ELSE IF( Z( K+1 ).LT.ZERO ) THEN
|
|
INFO = -( 200+K+1 )
|
|
CALL XERBLA( 'SLASQ2', 2 )
|
|
RETURN
|
|
END IF
|
|
D = D + Z( K )
|
|
E = E + Z( K+1 )
|
|
QMAX = MAX( QMAX, Z( K ) )
|
|
EMIN = MIN( EMIN, Z( K+1 ) )
|
|
ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
|
|
10 CONTINUE
|
|
IF( Z( 2*N-1 ).LT.ZERO ) THEN
|
|
INFO = -( 200+2*N-1 )
|
|
CALL XERBLA( 'SLASQ2', 2 )
|
|
RETURN
|
|
END IF
|
|
D = D + Z( 2*N-1 )
|
|
QMAX = MAX( QMAX, Z( 2*N-1 ) )
|
|
ZMAX = MAX( QMAX, ZMAX )
|
|
*
|
|
* Check for diagonality.
|
|
*
|
|
IF( E.EQ.ZERO ) THEN
|
|
DO 20 K = 2, N
|
|
Z( K ) = Z( 2*K-1 )
|
|
20 CONTINUE
|
|
CALL SLASRT( 'D', N, Z, IINFO )
|
|
Z( 2*N-1 ) = D
|
|
RETURN
|
|
END IF
|
|
*
|
|
TRACE = D + E
|
|
*
|
|
* Check for zero data.
|
|
*
|
|
IF( TRACE.EQ.ZERO ) THEN
|
|
Z( 2*N-1 ) = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Check whether the machine is IEEE conformable.
|
|
*
|
|
* IEEE = ( ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 )
|
|
*
|
|
* [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with
|
|
* some the test matrices of type 16. The double precision code is fine.
|
|
*
|
|
IEEE = .FALSE.
|
|
*
|
|
* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
|
|
*
|
|
DO 30 K = 2*N, 2, -2
|
|
Z( 2*K ) = ZERO
|
|
Z( 2*K-1 ) = Z( K )
|
|
Z( 2*K-2 ) = ZERO
|
|
Z( 2*K-3 ) = Z( K-1 )
|
|
30 CONTINUE
|
|
*
|
|
I0 = 1
|
|
N0 = N
|
|
*
|
|
* Reverse the qd-array, if warranted.
|
|
*
|
|
IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
|
|
IPN4 = 4*( I0+N0 )
|
|
DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
|
|
TEMP = Z( I4-3 )
|
|
Z( I4-3 ) = Z( IPN4-I4-3 )
|
|
Z( IPN4-I4-3 ) = TEMP
|
|
TEMP = Z( I4-1 )
|
|
Z( I4-1 ) = Z( IPN4-I4-5 )
|
|
Z( IPN4-I4-5 ) = TEMP
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
* Initial split checking via dqd and Li's test.
|
|
*
|
|
PP = 0
|
|
*
|
|
DO 80 K = 1, 2
|
|
*
|
|
D = Z( 4*N0+PP-3 )
|
|
DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
|
|
IF( Z( I4-1 ).LE.TOL2*D ) THEN
|
|
Z( I4-1 ) = -ZERO
|
|
D = Z( I4-3 )
|
|
ELSE
|
|
D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
|
|
END IF
|
|
50 CONTINUE
|
|
*
|
|
* dqd maps Z to ZZ plus Li's test.
|
|
*
|
|
EMIN = Z( 4*I0+PP+1 )
|
|
D = Z( 4*I0+PP-3 )
|
|
DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
|
|
Z( I4-2*PP-2 ) = D + Z( I4-1 )
|
|
IF( Z( I4-1 ).LE.TOL2*D ) THEN
|
|
Z( I4-1 ) = -ZERO
|
|
Z( I4-2*PP-2 ) = D
|
|
Z( I4-2*PP ) = ZERO
|
|
D = Z( I4+1 )
|
|
ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
|
|
$ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
|
|
TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
|
|
Z( I4-2*PP ) = Z( I4-1 )*TEMP
|
|
D = D*TEMP
|
|
ELSE
|
|
Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
|
|
D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
|
|
END IF
|
|
EMIN = MIN( EMIN, Z( I4-2*PP ) )
|
|
60 CONTINUE
|
|
Z( 4*N0-PP-2 ) = D
|
|
*
|
|
* Now find qmax.
|
|
*
|
|
QMAX = Z( 4*I0-PP-2 )
|
|
DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
|
|
QMAX = MAX( QMAX, Z( I4 ) )
|
|
70 CONTINUE
|
|
*
|
|
* Prepare for the next iteration on K.
|
|
*
|
|
PP = 1 - PP
|
|
80 CONTINUE
|
|
*
|
|
* Initialise variables to pass to SLASQ3.
|
|
*
|
|
TTYPE = 0
|
|
DMIN1 = ZERO
|
|
DMIN2 = ZERO
|
|
DN = ZERO
|
|
DN1 = ZERO
|
|
DN2 = ZERO
|
|
G = ZERO
|
|
TAU = ZERO
|
|
*
|
|
ITER = 2
|
|
NFAIL = 0
|
|
NDIV = 2*( N0-I0 )
|
|
*
|
|
DO 160 IWHILA = 1, N + 1
|
|
IF( N0.LT.1 )
|
|
$ GO TO 170
|
|
*
|
|
* While array unfinished do
|
|
*
|
|
* E(N0) holds the value of SIGMA when submatrix in I0:N0
|
|
* splits from the rest of the array, but is negated.
|
|
*
|
|
DESIG = ZERO
|
|
IF( N0.EQ.N ) THEN
|
|
SIGMA = ZERO
|
|
ELSE
|
|
SIGMA = -Z( 4*N0-1 )
|
|
END IF
|
|
IF( SIGMA.LT.ZERO ) THEN
|
|
INFO = 1
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Find last unreduced submatrix's top index I0, find QMAX and
|
|
* EMIN. Find Gershgorin-type bound if Q's much greater than E's.
|
|
*
|
|
EMAX = ZERO
|
|
IF( N0.GT.I0 ) THEN
|
|
EMIN = ABS( Z( 4*N0-5 ) )
|
|
ELSE
|
|
EMIN = ZERO
|
|
END IF
|
|
QMIN = Z( 4*N0-3 )
|
|
QMAX = QMIN
|
|
DO 90 I4 = 4*N0, 8, -4
|
|
IF( Z( I4-5 ).LE.ZERO )
|
|
$ GO TO 100
|
|
IF( QMIN.GE.FOUR*EMAX ) THEN
|
|
QMIN = MIN( QMIN, Z( I4-3 ) )
|
|
EMAX = MAX( EMAX, Z( I4-5 ) )
|
|
END IF
|
|
QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
|
|
EMIN = MIN( EMIN, Z( I4-5 ) )
|
|
90 CONTINUE
|
|
I4 = 4
|
|
*
|
|
100 CONTINUE
|
|
I0 = I4 / 4
|
|
PP = 0
|
|
*
|
|
IF( N0-I0.GT.1 ) THEN
|
|
DEE = Z( 4*I0-3 )
|
|
DEEMIN = DEE
|
|
KMIN = I0
|
|
DO 110 I4 = 4*I0+1, 4*N0-3, 4
|
|
DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
|
|
IF( DEE.LE.DEEMIN ) THEN
|
|
DEEMIN = DEE
|
|
KMIN = ( I4+3 )/4
|
|
END IF
|
|
110 CONTINUE
|
|
IF( (KMIN-I0)*2.LT.N0-KMIN .AND.
|
|
$ DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
|
|
IPN4 = 4*( I0+N0 )
|
|
PP = 2
|
|
DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
|
|
TEMP = Z( I4-3 )
|
|
Z( I4-3 ) = Z( IPN4-I4-3 )
|
|
Z( IPN4-I4-3 ) = TEMP
|
|
TEMP = Z( I4-2 )
|
|
Z( I4-2 ) = Z( IPN4-I4-2 )
|
|
Z( IPN4-I4-2 ) = TEMP
|
|
TEMP = Z( I4-1 )
|
|
Z( I4-1 ) = Z( IPN4-I4-5 )
|
|
Z( IPN4-I4-5 ) = TEMP
|
|
TEMP = Z( I4 )
|
|
Z( I4 ) = Z( IPN4-I4-4 )
|
|
Z( IPN4-I4-4 ) = TEMP
|
|
120 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* Put -(initial shift) into DMIN.
|
|
*
|
|
DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
|
|
*
|
|
* Now I0:N0 is unreduced.
|
|
* PP = 0 for ping, PP = 1 for pong.
|
|
* PP = 2 indicates that flipping was applied to the Z array and
|
|
* and that the tests for deflation upon entry in SLASQ3
|
|
* should not be performed.
|
|
*
|
|
NBIG = 100*( N0-I0+1 )
|
|
DO 140 IWHILB = 1, NBIG
|
|
IF( I0.GT.N0 )
|
|
$ GO TO 150
|
|
*
|
|
* While submatrix unfinished take a good dqds step.
|
|
*
|
|
CALL SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
|
|
$ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
|
|
$ DN2, G, TAU )
|
|
*
|
|
PP = 1 - PP
|
|
*
|
|
* When EMIN is very small check for splits.
|
|
*
|
|
IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
|
|
IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
|
|
$ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
|
|
SPLT = I0 - 1
|
|
QMAX = Z( 4*I0-3 )
|
|
EMIN = Z( 4*I0-1 )
|
|
OLDEMN = Z( 4*I0 )
|
|
DO 130 I4 = 4*I0, 4*( N0-3 ), 4
|
|
IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
|
|
$ Z( I4-1 ).LE.TOL2*SIGMA ) THEN
|
|
Z( I4-1 ) = -SIGMA
|
|
SPLT = I4 / 4
|
|
QMAX = ZERO
|
|
EMIN = Z( I4+3 )
|
|
OLDEMN = Z( I4+4 )
|
|
ELSE
|
|
QMAX = MAX( QMAX, Z( I4+1 ) )
|
|
EMIN = MIN( EMIN, Z( I4-1 ) )
|
|
OLDEMN = MIN( OLDEMN, Z( I4 ) )
|
|
END IF
|
|
130 CONTINUE
|
|
Z( 4*N0-1 ) = EMIN
|
|
Z( 4*N0 ) = OLDEMN
|
|
I0 = SPLT + 1
|
|
END IF
|
|
END IF
|
|
*
|
|
140 CONTINUE
|
|
*
|
|
INFO = 2
|
|
*
|
|
* Maximum number of iterations exceeded, restore the shift
|
|
* SIGMA and place the new d's and e's in a qd array.
|
|
* This might need to be done for several blocks
|
|
*
|
|
I1 = I0
|
|
N1 = N0
|
|
145 CONTINUE
|
|
TEMPQ = Z( 4*I0-3 )
|
|
Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
|
|
DO K = I0+1, N0
|
|
TEMPE = Z( 4*K-5 )
|
|
Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
|
|
TEMPQ = Z( 4*K-3 )
|
|
Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
|
|
END DO
|
|
*
|
|
* Prepare to do this on the previous block if there is one
|
|
*
|
|
IF( I1.GT.1 ) THEN
|
|
N1 = I1-1
|
|
DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) )
|
|
I1 = I1 - 1
|
|
END DO
|
|
IF( I1.GE.1 ) THEN
|
|
SIGMA = -Z(4*N1-1)
|
|
GO TO 145
|
|
END IF
|
|
END IF
|
|
|
|
DO K = 1, N
|
|
Z( 2*K-1 ) = Z( 4*K-3 )
|
|
*
|
|
* Only the block 1..N0 is unfinished. The rest of the e's
|
|
* must be essentially zero, although sometimes other data
|
|
* has been stored in them.
|
|
*
|
|
IF( K.LT.N0 ) THEN
|
|
Z( 2*K ) = Z( 4*K-1 )
|
|
ELSE
|
|
Z( 2*K ) = 0
|
|
END IF
|
|
END DO
|
|
RETURN
|
|
*
|
|
* end IWHILB
|
|
*
|
|
150 CONTINUE
|
|
*
|
|
160 CONTINUE
|
|
*
|
|
INFO = 3
|
|
RETURN
|
|
*
|
|
* end IWHILA
|
|
*
|
|
170 CONTINUE
|
|
*
|
|
* Move q's to the front.
|
|
*
|
|
DO 180 K = 2, N
|
|
Z( K ) = Z( 4*K-3 )
|
|
180 CONTINUE
|
|
*
|
|
* Sort and compute sum of eigenvalues.
|
|
*
|
|
CALL SLASRT( 'D', N, Z, IINFO )
|
|
*
|
|
E = ZERO
|
|
DO 190 K = N, 1, -1
|
|
E = E + Z( K )
|
|
190 CONTINUE
|
|
*
|
|
* Store trace, sum(eigenvalues) and information on performance.
|
|
*
|
|
Z( 2*N+1 ) = TRACE
|
|
Z( 2*N+2 ) = E
|
|
Z( 2*N+3 ) = REAL( ITER )
|
|
Z( 2*N+4 ) = REAL( NDIV ) / REAL( N**2 )
|
|
Z( 2*N+5 ) = HUNDRD*NFAIL / REAL( ITER )
|
|
RETURN
|
|
*
|
|
* End of SLASQ2
|
|
*
|
|
END
|
|
|