You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
656 lines
23 KiB
656 lines
23 KiB
*> \brief \b SLATRS3 solves a triangular system of equations with the scale factors set to prevent overflow.
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA,
|
|
* X, LDX, SCALE, CNORM, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER DIAG, NORMIN, TRANS, UPLO
|
|
* INTEGER INFO, LDA, LWORK, LDX, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A( LDA, * ), CNORM( * ), SCALE( * ),
|
|
* WORK( * ), X( LDX, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLATRS3 solves one of the triangular systems
|
|
*>
|
|
*> A * X = B * diag(scale) or A**T * X = B * diag(scale)
|
|
*>
|
|
*> with scaling to prevent overflow. Here A is an upper or lower
|
|
*> triangular matrix, A**T denotes the transpose of A. X and B are
|
|
*> n by nrhs matrices and scale is an nrhs element vector of scaling
|
|
*> factors. A scaling factor scale(j) is usually less than or equal
|
|
*> to 1, chosen such that X(:,j) is less than the overflow threshold.
|
|
*> If the matrix A is singular (A(j,j) = 0 for some j), then
|
|
*> a non-trivial solution to A*X = 0 is returned. If the system is
|
|
*> so badly scaled that the solution cannot be represented as
|
|
*> (1/scale(k))*X(:,k), then x(:,k) = 0 and scale(k) is returned.
|
|
*>
|
|
*> This is a BLAS-3 version of LATRS for solving several right
|
|
*> hand sides simultaneously.
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the matrix A is upper or lower triangular.
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> Specifies the operation applied to A.
|
|
*> = 'N': Solve A * x = s*b (No transpose)
|
|
*> = 'T': Solve A**T* x = s*b (Transpose)
|
|
*> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> Specifies whether or not the matrix A is unit triangular.
|
|
*> = 'N': Non-unit triangular
|
|
*> = 'U': Unit triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NORMIN
|
|
*> \verbatim
|
|
*> NORMIN is CHARACTER*1
|
|
*> Specifies whether CNORM has been set or not.
|
|
*> = 'Y': CNORM contains the column norms on entry
|
|
*> = 'N': CNORM is not set on entry. On exit, the norms will
|
|
*> be computed and stored in CNORM.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of columns of X. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA,N)
|
|
*> The triangular matrix A. If UPLO = 'U', the leading n by n
|
|
*> upper triangular part of the array A contains the upper
|
|
*> triangular matrix, and the strictly lower triangular part of
|
|
*> A is not referenced. If UPLO = 'L', the leading n by n lower
|
|
*> triangular part of the array A contains the lower triangular
|
|
*> matrix, and the strictly upper triangular part of A is not
|
|
*> referenced. If DIAG = 'U', the diagonal elements of A are
|
|
*> also not referenced and are assumed to be 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max (1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X
|
|
*> \verbatim
|
|
*> X is REAL array, dimension (LDX,NRHS)
|
|
*> On entry, the right hand side B of the triangular system.
|
|
*> On exit, X is overwritten by the solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX
|
|
*> \verbatim
|
|
*> LDX is INTEGER
|
|
*> The leading dimension of the array X. LDX >= max (1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCALE
|
|
*> \verbatim
|
|
*> SCALE is REAL array, dimension (NRHS)
|
|
*> The scaling factor s(k) is for the triangular system
|
|
*> A * x(:,k) = s(k)*b(:,k) or A**T* x(:,k) = s(k)*b(:,k).
|
|
*> If SCALE = 0, the matrix A is singular or badly scaled.
|
|
*> If A(j,j) = 0 is encountered, a non-trivial vector x(:,k)
|
|
*> that is an exact or approximate solution to A*x(:,k) = 0
|
|
*> is returned. If the system so badly scaled that solution
|
|
*> cannot be presented as x(:,k) * 1/s(k), then x(:,k) = 0
|
|
*> is returned.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] CNORM
|
|
*> \verbatim
|
|
*> CNORM is REAL array, dimension (N)
|
|
*>
|
|
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
|
|
*> contains the norm of the off-diagonal part of the j-th column
|
|
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
|
|
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
|
|
*> must be greater than or equal to the 1-norm.
|
|
*>
|
|
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
|
|
*> returns the 1-norm of the offdiagonal part of the j-th column
|
|
*> of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (LWORK).
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal size of
|
|
*> WORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> LWORK is INTEGER
|
|
*> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where
|
|
*> NBA = (N + NB - 1)/NB and NB is the optimal block size.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal dimensions of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -k, the k-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHERauxiliary
|
|
*> \par Further Details:
|
|
* =====================
|
|
* \verbatim
|
|
* The algorithm follows the structure of a block triangular solve.
|
|
* The diagonal block is solved with a call to the robust the triangular
|
|
* solver LATRS for every right-hand side RHS = 1, ..., NRHS
|
|
* op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS ),
|
|
* where op( A ) = A or op( A ) = A**T.
|
|
* The linear block updates operate on block columns of X,
|
|
* B( I, K ) - op(A( I, J )) * X( J, K )
|
|
* and use GEMM. To avoid overflow in the linear block update, the worst case
|
|
* growth is estimated. For every RHS, a scale factor s <= 1.0 is computed
|
|
* such that
|
|
* || s * B( I, RHS )||_oo
|
|
* + || op(A( I, J )) ||_oo * || s * X( J, RHS ) ||_oo <= Overflow threshold
|
|
*
|
|
* Once all columns of a block column have been rescaled (BLAS-1), the linear
|
|
* update is executed with GEMM without overflow.
|
|
*
|
|
* To limit rescaling, local scale factors track the scaling of column segments.
|
|
* There is one local scale factor s( I, RHS ) per block row I = 1, ..., NBA
|
|
* per right-hand side column RHS = 1, ..., NRHS. The global scale factor
|
|
* SCALE( RHS ) is chosen as the smallest local scale factor s( I, RHS )
|
|
* I = 1, ..., NBA.
|
|
* A triangular solve op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS )
|
|
* updates the local scale factor s( J, RHS ) := s( J, RHS ) * SCALOC. The
|
|
* linear update of potentially inconsistently scaled vector segments
|
|
* s( I, RHS ) * b( I, RHS ) - op(A( I, J )) * ( s( J, RHS )* x( J, RHS ) )
|
|
* computes a consistent scaling SCAMIN = MIN( s(I, RHS ), s(J, RHS) ) and,
|
|
* if necessary, rescales the blocks prior to calling GEMM.
|
|
*
|
|
* \endverbatim
|
|
* =====================================================================
|
|
* References:
|
|
* C. C. Kjelgaard Mikkelsen, A. B. Schwarz and L. Karlsson (2019).
|
|
* Parallel robust solution of triangular linear systems. Concurrency
|
|
* and Computation: Practice and Experience, 31(19), e5064.
|
|
*
|
|
* Contributor:
|
|
* Angelika Schwarz, Umea University, Sweden.
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA,
|
|
$ X, LDX, SCALE, CNORM, WORK, LWORK, INFO )
|
|
IMPLICIT NONE
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIAG, TRANS, NORMIN, UPLO
|
|
INTEGER INFO, LDA, LWORK, LDX, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A( LDA, * ), CNORM( * ), X( LDX, * ),
|
|
$ SCALE( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
INTEGER NBMAX, NBMIN, NBRHS, NRHSMIN
|
|
PARAMETER ( NRHSMIN = 2, NBRHS = 32 )
|
|
PARAMETER ( NBMIN = 8, NBMAX = 64 )
|
|
* ..
|
|
* .. Local Arrays ..
|
|
REAL W( NBMAX ), XNRM( NBRHS )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER
|
|
INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J,
|
|
$ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2,
|
|
$ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS
|
|
REAL ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC,
|
|
$ SCAMIN, SMLNUM, TMAX
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
REAL SLAMCH, SLANGE, SLARMM
|
|
EXTERNAL ILAENV, LSAME, SLAMCH, SLANGE, SLARMM
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SLATRS, SSCAL, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
NOUNIT = LSAME( DIAG, 'N' )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
*
|
|
* Partition A and X into blocks.
|
|
*
|
|
NB = MAX( 8, ILAENV( 1, 'SLATRS', '', N, N, -1, -1 ) )
|
|
NB = MIN( NBMAX, NB )
|
|
NBA = MAX( 1, (N + NB - 1) / NB )
|
|
NBX = MAX( 1, (NRHS + NBRHS - 1) / NBRHS )
|
|
*
|
|
* Compute the workspace
|
|
*
|
|
* The workspace comprises two parts.
|
|
* The first part stores the local scale factors. Each simultaneously
|
|
* computed right-hand side requires one local scale factor per block
|
|
* row. WORK( I + KK * LDS ) is the scale factor of the vector
|
|
* segment associated with the I-th block row and the KK-th vector
|
|
* in the block column.
|
|
LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) )
|
|
LDS = NBA
|
|
* The second part stores upper bounds of the triangular A. There are
|
|
* a total of NBA x NBA blocks, of which only the upper triangular
|
|
* part or the lower triangular part is referenced. The upper bound of
|
|
* the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ).
|
|
LANRM = NBA * NBA
|
|
AWRK = LSCALE
|
|
WORK( 1 ) = LSCALE + LANRM
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
|
|
$ LSAME( TRANS, 'C' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
|
|
$ LSAME( NORMIN, 'N' ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( NRHS.LT.0 ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
|
|
INFO = -10
|
|
ELSE IF( .NOT.LQUERY .AND. LWORK.LT.WORK( 1 ) ) THEN
|
|
INFO = -14
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SLATRS3', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Initialize scaling factors
|
|
*
|
|
DO KK = 1, NRHS
|
|
SCALE( KK ) = ONE
|
|
END DO
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( MIN( N, NRHS ).EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Determine machine dependent constant to control overflow.
|
|
*
|
|
BIGNUM = SLAMCH( 'Overflow' )
|
|
SMLNUM = SLAMCH( 'Safe Minimum' )
|
|
*
|
|
* Use unblocked code for small problems
|
|
*
|
|
IF( NRHS.LT.NRHSMIN ) THEN
|
|
CALL SLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X( 1, 1),
|
|
$ SCALE( 1 ), CNORM, INFO )
|
|
DO K = 2, NRHS
|
|
CALL SLATRS( UPLO, TRANS, DIAG, 'Y', N, A, LDA, X( 1, K ),
|
|
$ SCALE( K ), CNORM, INFO )
|
|
END DO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Compute norms of blocks of A excluding diagonal blocks and find
|
|
* the block with the largest norm TMAX.
|
|
*
|
|
TMAX = ZERO
|
|
DO J = 1, NBA
|
|
J1 = (J-1)*NB + 1
|
|
J2 = MIN( J*NB, N ) + 1
|
|
IF ( UPPER ) THEN
|
|
IFIRST = 1
|
|
ILAST = J - 1
|
|
ELSE
|
|
IFIRST = J + 1
|
|
ILAST = NBA
|
|
END IF
|
|
DO I = IFIRST, ILAST
|
|
I1 = (I-1)*NB + 1
|
|
I2 = MIN( I*NB, N ) + 1
|
|
*
|
|
* Compute upper bound of A( I1:I2-1, J1:J2-1 ).
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
ANRM = SLANGE( 'I', I2-I1, J2-J1, A( I1, J1 ), LDA, W )
|
|
WORK( AWRK + I+(J-1)*NBA ) = ANRM
|
|
ELSE
|
|
ANRM = SLANGE( '1', I2-I1, J2-J1, A( I1, J1 ), LDA, W )
|
|
WORK( AWRK + J+(I-1)*NBA ) = ANRM
|
|
END IF
|
|
TMAX = MAX( TMAX, ANRM )
|
|
END DO
|
|
END DO
|
|
*
|
|
IF( .NOT. TMAX.LE.SLAMCH('Overflow') ) THEN
|
|
*
|
|
* Some matrix entries have huge absolute value. At least one upper
|
|
* bound norm( A(I1:I2-1, J1:J2-1), 'I') is not a valid floating-point
|
|
* number, either due to overflow in LANGE or due to Inf in A.
|
|
* Fall back to LATRS. Set normin = 'N' for every right-hand side to
|
|
* force computation of TSCAL in LATRS to avoid the likely overflow
|
|
* in the computation of the column norms CNORM.
|
|
*
|
|
DO K = 1, NRHS
|
|
CALL SLATRS( UPLO, TRANS, DIAG, 'N', N, A, LDA, X( 1, K ),
|
|
$ SCALE( K ), CNORM, INFO )
|
|
END DO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Every right-hand side requires workspace to store NBA local scale
|
|
* factors. To save workspace, X is computed successively in block columns
|
|
* of width NBRHS, requiring a total of NBA x NBRHS space. If sufficient
|
|
* workspace is available, larger values of NBRHS or NBRHS = NRHS are viable.
|
|
DO K = 1, NBX
|
|
* Loop over block columns (index = K) of X and, for column-wise scalings,
|
|
* over individual columns (index = KK).
|
|
* K1: column index of the first column in X( J, K )
|
|
* K2: column index of the first column in X( J, K+1 )
|
|
* so the K2 - K1 is the column count of the block X( J, K )
|
|
K1 = (K-1)*NBRHS + 1
|
|
K2 = MIN( K*NBRHS, NRHS ) + 1
|
|
*
|
|
* Initialize local scaling factors of current block column X( J, K )
|
|
*
|
|
DO KK = 1, K2 - K1
|
|
DO I = 1, NBA
|
|
WORK( I+KK*LDS ) = ONE
|
|
END DO
|
|
END DO
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
*
|
|
* Solve A * X(:, K1:K2-1) = B * diag(scale(K1:K2-1))
|
|
*
|
|
IF( UPPER ) THEN
|
|
JFIRST = NBA
|
|
JLAST = 1
|
|
JINC = -1
|
|
ELSE
|
|
JFIRST = 1
|
|
JLAST = NBA
|
|
JINC = 1
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Solve A**T * X(:, K1:K2-1) = B * diag(scale(K1:K2-1))
|
|
*
|
|
IF( UPPER ) THEN
|
|
JFIRST = 1
|
|
JLAST = NBA
|
|
JINC = 1
|
|
ELSE
|
|
JFIRST = NBA
|
|
JLAST = 1
|
|
JINC = -1
|
|
END IF
|
|
END IF
|
|
*
|
|
DO J = JFIRST, JLAST, JINC
|
|
* J1: row index of the first row in A( J, J )
|
|
* J2: row index of the first row in A( J+1, J+1 )
|
|
* so that J2 - J1 is the row count of the block A( J, J )
|
|
J1 = (J-1)*NB + 1
|
|
J2 = MIN( J*NB, N ) + 1
|
|
*
|
|
* Solve op(A( J, J )) * X( J, RHS ) = SCALOC * B( J, RHS )
|
|
* for all right-hand sides in the current block column,
|
|
* one RHS at a time.
|
|
*
|
|
DO KK = 1, K2-K1
|
|
RHS = K1 + KK - 1
|
|
IF( KK.EQ.1 ) THEN
|
|
CALL SLATRS( UPLO, TRANS, DIAG, 'N', J2-J1,
|
|
$ A( J1, J1 ), LDA, X( J1, RHS ),
|
|
$ SCALOC, CNORM, INFO )
|
|
ELSE
|
|
CALL SLATRS( UPLO, TRANS, DIAG, 'Y', J2-J1,
|
|
$ A( J1, J1 ), LDA, X( J1, RHS ),
|
|
$ SCALOC, CNORM, INFO )
|
|
END IF
|
|
* Find largest absolute value entry in the vector segment
|
|
* X( J1:J2-1, RHS ) as an upper bound for the worst case
|
|
* growth in the linear updates.
|
|
XNRM( KK ) = SLANGE( 'I', J2-J1, 1, X( J1, RHS ),
|
|
$ LDX, W )
|
|
*
|
|
IF( SCALOC .EQ. ZERO ) THEN
|
|
* LATRS found that A is singular through A(j,j) = 0.
|
|
* Reset the computation x(1:n) = 0, x(j) = 1, SCALE = 0
|
|
* and compute A*x = 0 (or A**T*x = 0). Note that
|
|
* X(J1:J2-1, KK) is set by LATRS.
|
|
SCALE( RHS ) = ZERO
|
|
DO II = 1, J1-1
|
|
X( II, KK ) = ZERO
|
|
END DO
|
|
DO II = J2, N
|
|
X( II, KK ) = ZERO
|
|
END DO
|
|
* Discard the local scale factors.
|
|
DO II = 1, NBA
|
|
WORK( II+KK*LDS ) = ONE
|
|
END DO
|
|
SCALOC = ONE
|
|
ELSE IF( SCALOC*WORK( J+KK*LDS ) .EQ. ZERO ) THEN
|
|
* LATRS computed a valid scale factor, but combined with
|
|
* the current scaling the solution does not have a
|
|
* scale factor > 0.
|
|
*
|
|
* Set WORK( J+KK*LDS ) to smallest valid scale
|
|
* factor and increase SCALOC accordingly.
|
|
SCAL = WORK( J+KK*LDS ) / SMLNUM
|
|
SCALOC = SCALOC * SCAL
|
|
WORK( J+KK*LDS ) = SMLNUM
|
|
* If LATRS overestimated the growth, x may be
|
|
* rescaled to preserve a valid combined scale
|
|
* factor WORK( J, KK ) > 0.
|
|
RSCAL = ONE / SCALOC
|
|
IF( XNRM( KK )*RSCAL .LE. BIGNUM ) THEN
|
|
XNRM( KK ) = XNRM( KK ) * RSCAL
|
|
CALL SSCAL( J2-J1, RSCAL, X( J1, RHS ), 1 )
|
|
SCALOC = ONE
|
|
ELSE
|
|
* The system op(A) * x = b is badly scaled and its
|
|
* solution cannot be represented as (1/scale) * x.
|
|
* Set x to zero. This approach deviates from LATRS
|
|
* where a completely meaningless non-zero vector
|
|
* is returned that is not a solution to op(A) * x = b.
|
|
SCALE( RHS ) = ZERO
|
|
DO II = 1, N
|
|
X( II, KK ) = ZERO
|
|
END DO
|
|
* Discard the local scale factors.
|
|
DO II = 1, NBA
|
|
WORK( II+KK*LDS ) = ONE
|
|
END DO
|
|
SCALOC = ONE
|
|
END IF
|
|
END IF
|
|
SCALOC = SCALOC * WORK( J+KK*LDS )
|
|
WORK( J+KK*LDS ) = SCALOC
|
|
END DO
|
|
*
|
|
* Linear block updates
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
IF( UPPER ) THEN
|
|
IFIRST = J - 1
|
|
ILAST = 1
|
|
IINC = -1
|
|
ELSE
|
|
IFIRST = J + 1
|
|
ILAST = NBA
|
|
IINC = 1
|
|
END IF
|
|
ELSE
|
|
IF( UPPER ) THEN
|
|
IFIRST = J + 1
|
|
ILAST = NBA
|
|
IINC = 1
|
|
ELSE
|
|
IFIRST = J - 1
|
|
ILAST = 1
|
|
IINC = -1
|
|
END IF
|
|
END IF
|
|
*
|
|
DO I = IFIRST, ILAST, IINC
|
|
* I1: row index of the first column in X( I, K )
|
|
* I2: row index of the first column in X( I+1, K )
|
|
* so the I2 - I1 is the row count of the block X( I, K )
|
|
I1 = (I-1)*NB + 1
|
|
I2 = MIN( I*NB, N ) + 1
|
|
*
|
|
* Prepare the linear update to be executed with GEMM.
|
|
* For each column, compute a consistent scaling, a
|
|
* scaling factor to survive the linear update, and
|
|
* rescale the column segments, if necessary. Then
|
|
* the linear update is safely executed.
|
|
*
|
|
DO KK = 1, K2-K1
|
|
RHS = K1 + KK - 1
|
|
* Compute consistent scaling
|
|
SCAMIN = MIN( WORK( I+KK*LDS), WORK( J+KK*LDS ) )
|
|
*
|
|
* Compute scaling factor to survive the linear update
|
|
* simulating consistent scaling.
|
|
*
|
|
BNRM = SLANGE( 'I', I2-I1, 1, X( I1, RHS ), LDX, W )
|
|
BNRM = BNRM*( SCAMIN / WORK( I+KK*LDS ) )
|
|
XNRM( KK ) = XNRM( KK )*(SCAMIN / WORK( J+KK*LDS ))
|
|
ANRM = WORK( AWRK + I+(J-1)*NBA )
|
|
SCALOC = SLARMM( ANRM, XNRM( KK ), BNRM )
|
|
*
|
|
* Simultaneously apply the robust update factor and the
|
|
* consistency scaling factor to B( I, KK ) and B( J, KK ).
|
|
*
|
|
SCAL = ( SCAMIN / WORK( I+KK*LDS) )*SCALOC
|
|
IF( SCAL.NE.ONE ) THEN
|
|
CALL SSCAL( I2-I1, SCAL, X( I1, RHS ), 1 )
|
|
WORK( I+KK*LDS ) = SCAMIN*SCALOC
|
|
END IF
|
|
*
|
|
SCAL = ( SCAMIN / WORK( J+KK*LDS ) )*SCALOC
|
|
IF( SCAL.NE.ONE ) THEN
|
|
CALL SSCAL( J2-J1, SCAL, X( J1, RHS ), 1 )
|
|
WORK( J+KK*LDS ) = SCAMIN*SCALOC
|
|
END IF
|
|
END DO
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
*
|
|
* B( I, K ) := B( I, K ) - A( I, J ) * X( J, K )
|
|
*
|
|
CALL SGEMM( 'N', 'N', I2-I1, K2-K1, J2-J1, -ONE,
|
|
$ A( I1, J1 ), LDA, X( J1, K1 ), LDX,
|
|
$ ONE, X( I1, K1 ), LDX )
|
|
ELSE
|
|
*
|
|
* B( I, K ) := B( I, K ) - A( I, J )**T * X( J, K )
|
|
*
|
|
CALL SGEMM( 'T', 'N', I2-I1, K2-K1, J2-J1, -ONE,
|
|
$ A( J1, I1 ), LDA, X( J1, K1 ), LDX,
|
|
$ ONE, X( I1, K1 ), LDX )
|
|
END IF
|
|
END DO
|
|
END DO
|
|
*
|
|
* Reduce local scaling factors
|
|
*
|
|
DO KK = 1, K2-K1
|
|
RHS = K1 + KK - 1
|
|
DO I = 1, NBA
|
|
SCALE( RHS ) = MIN( SCALE( RHS ), WORK( I+KK*LDS ) )
|
|
END DO
|
|
END DO
|
|
*
|
|
* Realize consistent scaling
|
|
*
|
|
DO KK = 1, K2-K1
|
|
RHS = K1 + KK - 1
|
|
IF( SCALE( RHS ).NE.ONE .AND. SCALE( RHS ).NE. ZERO ) THEN
|
|
DO I = 1, NBA
|
|
I1 = (I-1)*NB + 1
|
|
I2 = MIN( I*NB, N ) + 1
|
|
SCAL = SCALE( RHS ) / WORK( I+KK*LDS )
|
|
IF( SCAL.NE.ONE )
|
|
$ CALL SSCAL( I2-I1, SCAL, X( I1, RHS ), 1 )
|
|
END DO
|
|
END IF
|
|
END DO
|
|
END DO
|
|
RETURN
|
|
*
|
|
* End of SLATRS3
|
|
*
|
|
END
|
|
|