You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
686 lines
23 KiB
686 lines
23 KiB
*> \brief \b SORBDB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SORBDB + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
|
|
* X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
|
|
* TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER SIGNS, TRANS
|
|
* INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
|
|
* $ Q
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL PHI( * ), THETA( * )
|
|
* REAL TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
|
|
* $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
|
|
* $ X21( LDX21, * ), X22( LDX22, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SORBDB simultaneously bidiagonalizes the blocks of an M-by-M
|
|
*> partitioned orthogonal matrix X:
|
|
*>
|
|
*> [ B11 | B12 0 0 ]
|
|
*> [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T
|
|
*> X = [-----------] = [---------] [----------------] [---------] .
|
|
*> [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
|
|
*> [ 0 | 0 0 I ]
|
|
*>
|
|
*> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
|
|
*> not the case, then X must be transposed and/or permuted. This can be
|
|
*> done in constant time using the TRANS and SIGNS options. See SORCSD
|
|
*> for details.)
|
|
*>
|
|
*> The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
|
|
*> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
|
|
*> represented implicitly by Householder vectors.
|
|
*>
|
|
*> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
|
|
*> implicitly by angles THETA, PHI.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER
|
|
*> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
|
|
*> order;
|
|
*> otherwise: X, U1, U2, V1T, and V2T are stored in column-
|
|
*> major order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SIGNS
|
|
*> \verbatim
|
|
*> SIGNS is CHARACTER
|
|
*> = 'O': The lower-left block is made nonpositive (the
|
|
*> "other" convention);
|
|
*> otherwise: The upper-right block is made nonpositive (the
|
|
*> "default" convention).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows and columns in X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] P
|
|
*> \verbatim
|
|
*> P is INTEGER
|
|
*> The number of rows in X11 and X12. 0 <= P <= M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Q
|
|
*> \verbatim
|
|
*> Q is INTEGER
|
|
*> The number of columns in X11 and X21. 0 <= Q <=
|
|
*> MIN(P,M-P,M-Q).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X11
|
|
*> \verbatim
|
|
*> X11 is REAL array, dimension (LDX11,Q)
|
|
*> On entry, the top-left block of the orthogonal matrix to be
|
|
*> reduced. On exit, the form depends on TRANS:
|
|
*> If TRANS = 'N', then
|
|
*> the columns of tril(X11) specify reflectors for P1,
|
|
*> the rows of triu(X11,1) specify reflectors for Q1;
|
|
*> else TRANS = 'T', and
|
|
*> the rows of triu(X11) specify reflectors for P1,
|
|
*> the columns of tril(X11,-1) specify reflectors for Q1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX11
|
|
*> \verbatim
|
|
*> LDX11 is INTEGER
|
|
*> The leading dimension of X11. If TRANS = 'N', then LDX11 >=
|
|
*> P; else LDX11 >= Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X12
|
|
*> \verbatim
|
|
*> X12 is REAL array, dimension (LDX12,M-Q)
|
|
*> On entry, the top-right block of the orthogonal matrix to
|
|
*> be reduced. On exit, the form depends on TRANS:
|
|
*> If TRANS = 'N', then
|
|
*> the rows of triu(X12) specify the first P reflectors for
|
|
*> Q2;
|
|
*> else TRANS = 'T', and
|
|
*> the columns of tril(X12) specify the first P reflectors
|
|
*> for Q2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX12
|
|
*> \verbatim
|
|
*> LDX12 is INTEGER
|
|
*> The leading dimension of X12. If TRANS = 'N', then LDX12 >=
|
|
*> P; else LDX11 >= M-Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X21
|
|
*> \verbatim
|
|
*> X21 is REAL array, dimension (LDX21,Q)
|
|
*> On entry, the bottom-left block of the orthogonal matrix to
|
|
*> be reduced. On exit, the form depends on TRANS:
|
|
*> If TRANS = 'N', then
|
|
*> the columns of tril(X21) specify reflectors for P2;
|
|
*> else TRANS = 'T', and
|
|
*> the rows of triu(X21) specify reflectors for P2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX21
|
|
*> \verbatim
|
|
*> LDX21 is INTEGER
|
|
*> The leading dimension of X21. If TRANS = 'N', then LDX21 >=
|
|
*> M-P; else LDX21 >= Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X22
|
|
*> \verbatim
|
|
*> X22 is REAL array, dimension (LDX22,M-Q)
|
|
*> On entry, the bottom-right block of the orthogonal matrix to
|
|
*> be reduced. On exit, the form depends on TRANS:
|
|
*> If TRANS = 'N', then
|
|
*> the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
|
|
*> M-P-Q reflectors for Q2,
|
|
*> else TRANS = 'T', and
|
|
*> the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
|
|
*> M-P-Q reflectors for P2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX22
|
|
*> \verbatim
|
|
*> LDX22 is INTEGER
|
|
*> The leading dimension of X22. If TRANS = 'N', then LDX22 >=
|
|
*> M-P; else LDX22 >= M-Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] THETA
|
|
*> \verbatim
|
|
*> THETA is REAL array, dimension (Q)
|
|
*> The entries of the bidiagonal blocks B11, B12, B21, B22 can
|
|
*> be computed from the angles THETA and PHI. See Further
|
|
*> Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PHI
|
|
*> \verbatim
|
|
*> PHI is REAL array, dimension (Q-1)
|
|
*> The entries of the bidiagonal blocks B11, B12, B21, B22 can
|
|
*> be computed from the angles THETA and PHI. See Further
|
|
*> Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUP1
|
|
*> \verbatim
|
|
*> TAUP1 is REAL array, dimension (P)
|
|
*> The scalar factors of the elementary reflectors that define
|
|
*> P1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUP2
|
|
*> \verbatim
|
|
*> TAUP2 is REAL array, dimension (M-P)
|
|
*> The scalar factors of the elementary reflectors that define
|
|
*> P2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUQ1
|
|
*> \verbatim
|
|
*> TAUQ1 is REAL array, dimension (Q)
|
|
*> The scalar factors of the elementary reflectors that define
|
|
*> Q1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUQ2
|
|
*> \verbatim
|
|
*> TAUQ2 is REAL array, dimension (M-Q)
|
|
*> The scalar factors of the elementary reflectors that define
|
|
*> Q2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= M-Q.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The bidiagonal blocks B11, B12, B21, and B22 are represented
|
|
*> implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
|
|
*> PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
|
|
*> lower bidiagonal. Every entry in each bidiagonal band is a product
|
|
*> of a sine or cosine of a THETA with a sine or cosine of a PHI. See
|
|
*> [1] or SORCSD for details.
|
|
*>
|
|
*> P1, P2, Q1, and Q2 are represented as products of elementary
|
|
*> reflectors. See SORCSD for details on generating P1, P2, Q1, and Q2
|
|
*> using SORGQR and SORGLQ.
|
|
*> \endverbatim
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
|
|
*> Algorithms, 50(1):33-65, 2009.
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
|
|
$ X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
|
|
$ TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER SIGNS, TRANS
|
|
INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
|
|
$ Q
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL PHI( * ), THETA( * )
|
|
REAL TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
|
|
$ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
|
|
$ X21( LDX21, * ), X22( LDX22, * )
|
|
* ..
|
|
*
|
|
* ====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL REALONE
|
|
PARAMETER ( REALONE = 1.0E0 )
|
|
REAL ONE
|
|
PARAMETER ( ONE = 1.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL COLMAJOR, LQUERY
|
|
INTEGER I, LWORKMIN, LWORKOPT
|
|
REAL Z1, Z2, Z3, Z4
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SAXPY, SLARF, SLARFGP, SSCAL, XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SNRM2
|
|
LOGICAL LSAME
|
|
EXTERNAL SNRM2, LSAME
|
|
* ..
|
|
* .. Intrinsic Functions
|
|
INTRINSIC ATAN2, COS, MAX, SIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test input arguments
|
|
*
|
|
INFO = 0
|
|
COLMAJOR = .NOT. LSAME( TRANS, 'T' )
|
|
IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
|
|
Z1 = REALONE
|
|
Z2 = REALONE
|
|
Z3 = REALONE
|
|
Z4 = REALONE
|
|
ELSE
|
|
Z1 = REALONE
|
|
Z2 = -REALONE
|
|
Z3 = REALONE
|
|
Z4 = -REALONE
|
|
END IF
|
|
LQUERY = LWORK .EQ. -1
|
|
*
|
|
IF( M .LT. 0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
|
|
INFO = -4
|
|
ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
|
|
$ Q .GT. M-Q ) THEN
|
|
INFO = -5
|
|
ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
|
|
INFO = -11
|
|
ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
|
|
INFO = -11
|
|
ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
|
|
INFO = -13
|
|
ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
|
|
INFO = -13
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
*
|
|
IF( INFO .EQ. 0 ) THEN
|
|
LWORKOPT = M - Q
|
|
LWORKMIN = M - Q
|
|
WORK(1) = LWORKOPT
|
|
IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
|
|
INFO = -21
|
|
END IF
|
|
END IF
|
|
IF( INFO .NE. 0 ) THEN
|
|
CALL XERBLA( 'xORBDB', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Handle column-major and row-major separately
|
|
*
|
|
IF( COLMAJOR ) THEN
|
|
*
|
|
* Reduce columns 1, ..., Q of X11, X12, X21, and X22
|
|
*
|
|
DO I = 1, Q
|
|
*
|
|
IF( I .EQ. 1 ) THEN
|
|
CALL SSCAL( P-I+1, Z1, X11(I,I), 1 )
|
|
ELSE
|
|
CALL SSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), 1 )
|
|
CALL SAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I,I-1),
|
|
$ 1, X11(I,I), 1 )
|
|
END IF
|
|
IF( I .EQ. 1 ) THEN
|
|
CALL SSCAL( M-P-I+1, Z2, X21(I,I), 1 )
|
|
ELSE
|
|
CALL SSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), 1 )
|
|
CALL SAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I,I-1),
|
|
$ 1, X21(I,I), 1 )
|
|
END IF
|
|
*
|
|
THETA(I) = ATAN2( SNRM2( M-P-I+1, X21(I,I), 1 ),
|
|
$ SNRM2( P-I+1, X11(I,I), 1 ) )
|
|
*
|
|
IF( P .GT. I ) THEN
|
|
CALL SLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
|
|
ELSE IF( P .EQ. I ) THEN
|
|
CALL SLARFGP( P-I+1, X11(I,I), X11(I,I), 1, TAUP1(I) )
|
|
END IF
|
|
X11(I,I) = ONE
|
|
IF ( M-P .GT. I ) THEN
|
|
CALL SLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1,
|
|
$ TAUP2(I) )
|
|
ELSE IF ( M-P .EQ. I ) THEN
|
|
CALL SLARFGP( M-P-I+1, X21(I,I), X21(I,I), 1, TAUP2(I) )
|
|
END IF
|
|
X21(I,I) = ONE
|
|
*
|
|
IF ( Q .GT. I ) THEN
|
|
CALL SLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I),
|
|
$ X11(I,I+1), LDX11, WORK )
|
|
END IF
|
|
IF ( M-Q+1 .GT. I ) THEN
|
|
CALL SLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1, TAUP1(I),
|
|
$ X12(I,I), LDX12, WORK )
|
|
END IF
|
|
IF ( Q .GT. I ) THEN
|
|
CALL SLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I),
|
|
$ X21(I,I+1), LDX21, WORK )
|
|
END IF
|
|
IF ( M-Q+1 .GT. I ) THEN
|
|
CALL SLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1, TAUP2(I),
|
|
$ X22(I,I), LDX22, WORK )
|
|
END IF
|
|
*
|
|
IF( I .LT. Q ) THEN
|
|
CALL SSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I,I+1),
|
|
$ LDX11 )
|
|
CALL SAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I,I+1), LDX21,
|
|
$ X11(I,I+1), LDX11 )
|
|
END IF
|
|
CALL SSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), LDX12 )
|
|
CALL SAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), LDX22,
|
|
$ X12(I,I), LDX12 )
|
|
*
|
|
IF( I .LT. Q )
|
|
$ PHI(I) = ATAN2( SNRM2( Q-I, X11(I,I+1), LDX11 ),
|
|
$ SNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
|
|
*
|
|
IF( I .LT. Q ) THEN
|
|
IF ( Q-I .EQ. 1 ) THEN
|
|
CALL SLARFGP( Q-I, X11(I,I+1), X11(I,I+1), LDX11,
|
|
$ TAUQ1(I) )
|
|
ELSE
|
|
CALL SLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
|
|
$ TAUQ1(I) )
|
|
END IF
|
|
X11(I,I+1) = ONE
|
|
END IF
|
|
IF ( Q+I-1 .LT. M ) THEN
|
|
IF ( M-Q .EQ. I ) THEN
|
|
CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
|
|
$ TAUQ2(I) )
|
|
ELSE
|
|
CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
|
|
$ TAUQ2(I) )
|
|
END IF
|
|
END IF
|
|
X12(I,I) = ONE
|
|
*
|
|
IF( I .LT. Q ) THEN
|
|
CALL SLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
|
|
$ X11(I+1,I+1), LDX11, WORK )
|
|
CALL SLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
|
|
$ X21(I+1,I+1), LDX21, WORK )
|
|
END IF
|
|
IF ( P .GT. I ) THEN
|
|
CALL SLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
|
|
$ X12(I+1,I), LDX12, WORK )
|
|
END IF
|
|
IF ( M-P .GT. I ) THEN
|
|
CALL SLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12,
|
|
$ TAUQ2(I), X22(I+1,I), LDX22, WORK )
|
|
END IF
|
|
*
|
|
END DO
|
|
*
|
|
* Reduce columns Q + 1, ..., P of X12, X22
|
|
*
|
|
DO I = Q + 1, P
|
|
*
|
|
CALL SSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), LDX12 )
|
|
IF ( I .GE. M-Q ) THEN
|
|
CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
|
|
$ TAUQ2(I) )
|
|
ELSE
|
|
CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
|
|
$ TAUQ2(I) )
|
|
END IF
|
|
X12(I,I) = ONE
|
|
*
|
|
IF ( P .GT. I ) THEN
|
|
CALL SLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
|
|
$ X12(I+1,I), LDX12, WORK )
|
|
END IF
|
|
IF( M-P-Q .GE. 1 )
|
|
$ CALL SLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
|
|
$ TAUQ2(I), X22(Q+1,I), LDX22, WORK )
|
|
*
|
|
END DO
|
|
*
|
|
* Reduce columns P + 1, ..., M - Q of X12, X22
|
|
*
|
|
DO I = 1, M - P - Q
|
|
*
|
|
CALL SSCAL( M-P-Q-I+1, Z2*Z4, X22(Q+I,P+I), LDX22 )
|
|
IF ( I .EQ. M-P-Q ) THEN
|
|
CALL SLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I),
|
|
$ LDX22, TAUQ2(P+I) )
|
|
ELSE
|
|
CALL SLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
|
|
$ LDX22, TAUQ2(P+I) )
|
|
END IF
|
|
X22(Q+I,P+I) = ONE
|
|
IF ( I .LT. M-P-Q ) THEN
|
|
CALL SLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
|
|
$ TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
|
|
END IF
|
|
*
|
|
END DO
|
|
*
|
|
ELSE
|
|
*
|
|
* Reduce columns 1, ..., Q of X11, X12, X21, X22
|
|
*
|
|
DO I = 1, Q
|
|
*
|
|
IF( I .EQ. 1 ) THEN
|
|
CALL SSCAL( P-I+1, Z1, X11(I,I), LDX11 )
|
|
ELSE
|
|
CALL SSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), LDX11 )
|
|
CALL SAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I-1,I),
|
|
$ LDX12, X11(I,I), LDX11 )
|
|
END IF
|
|
IF( I .EQ. 1 ) THEN
|
|
CALL SSCAL( M-P-I+1, Z2, X21(I,I), LDX21 )
|
|
ELSE
|
|
CALL SSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), LDX21 )
|
|
CALL SAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I-1,I),
|
|
$ LDX22, X21(I,I), LDX21 )
|
|
END IF
|
|
*
|
|
THETA(I) = ATAN2( SNRM2( M-P-I+1, X21(I,I), LDX21 ),
|
|
$ SNRM2( P-I+1, X11(I,I), LDX11 ) )
|
|
*
|
|
CALL SLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
|
|
X11(I,I) = ONE
|
|
IF ( I .EQ. M-P ) THEN
|
|
CALL SLARFGP( M-P-I+1, X21(I,I), X21(I,I), LDX21,
|
|
$ TAUP2(I) )
|
|
ELSE
|
|
CALL SLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
|
|
$ TAUP2(I) )
|
|
END IF
|
|
X21(I,I) = ONE
|
|
*
|
|
IF ( Q .GT. I ) THEN
|
|
CALL SLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
|
|
$ X11(I+1,I), LDX11, WORK )
|
|
END IF
|
|
IF ( M-Q+1 .GT. I ) THEN
|
|
CALL SLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11,
|
|
$ TAUP1(I), X12(I,I), LDX12, WORK )
|
|
END IF
|
|
IF ( Q .GT. I ) THEN
|
|
CALL SLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
|
|
$ X21(I+1,I), LDX21, WORK )
|
|
END IF
|
|
IF ( M-Q+1 .GT. I ) THEN
|
|
CALL SLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
|
|
$ TAUP2(I), X22(I,I), LDX22, WORK )
|
|
END IF
|
|
*
|
|
IF( I .LT. Q ) THEN
|
|
CALL SSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I+1,I), 1 )
|
|
CALL SAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I+1,I), 1,
|
|
$ X11(I+1,I), 1 )
|
|
END IF
|
|
CALL SSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), 1 )
|
|
CALL SAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), 1,
|
|
$ X12(I,I), 1 )
|
|
*
|
|
IF( I .LT. Q )
|
|
$ PHI(I) = ATAN2( SNRM2( Q-I, X11(I+1,I), 1 ),
|
|
$ SNRM2( M-Q-I+1, X12(I,I), 1 ) )
|
|
*
|
|
IF( I .LT. Q ) THEN
|
|
IF ( Q-I .EQ. 1) THEN
|
|
CALL SLARFGP( Q-I, X11(I+1,I), X11(I+1,I), 1,
|
|
$ TAUQ1(I) )
|
|
ELSE
|
|
CALL SLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1,
|
|
$ TAUQ1(I) )
|
|
END IF
|
|
X11(I+1,I) = ONE
|
|
END IF
|
|
IF ( M-Q .GT. I ) THEN
|
|
CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1,
|
|
$ TAUQ2(I) )
|
|
ELSE
|
|
CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I), 1,
|
|
$ TAUQ2(I) )
|
|
END IF
|
|
X12(I,I) = ONE
|
|
*
|
|
IF( I .LT. Q ) THEN
|
|
CALL SLARF( 'L', Q-I, P-I, X11(I+1,I), 1, TAUQ1(I),
|
|
$ X11(I+1,I+1), LDX11, WORK )
|
|
CALL SLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1, TAUQ1(I),
|
|
$ X21(I+1,I+1), LDX21, WORK )
|
|
END IF
|
|
CALL SLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
|
|
$ X12(I,I+1), LDX12, WORK )
|
|
IF ( M-P-I .GT. 0 ) THEN
|
|
CALL SLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1, TAUQ2(I),
|
|
$ X22(I,I+1), LDX22, WORK )
|
|
END IF
|
|
*
|
|
END DO
|
|
*
|
|
* Reduce columns Q + 1, ..., P of X12, X22
|
|
*
|
|
DO I = Q + 1, P
|
|
*
|
|
CALL SSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), 1 )
|
|
CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
|
|
X12(I,I) = ONE
|
|
*
|
|
IF ( P .GT. I ) THEN
|
|
CALL SLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
|
|
$ X12(I,I+1), LDX12, WORK )
|
|
END IF
|
|
IF( M-P-Q .GE. 1 )
|
|
$ CALL SLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1, TAUQ2(I),
|
|
$ X22(I,Q+1), LDX22, WORK )
|
|
*
|
|
END DO
|
|
*
|
|
* Reduce columns P + 1, ..., M - Q of X12, X22
|
|
*
|
|
DO I = 1, M - P - Q
|
|
*
|
|
CALL SSCAL( M-P-Q-I+1, Z2*Z4, X22(P+I,Q+I), 1 )
|
|
IF ( M-P-Q .EQ. I ) THEN
|
|
CALL SLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I,Q+I), 1,
|
|
$ TAUQ2(P+I) )
|
|
X22(P+I,Q+I) = ONE
|
|
ELSE
|
|
CALL SLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
|
|
$ TAUQ2(P+I) )
|
|
X22(P+I,Q+I) = ONE
|
|
CALL SLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
|
|
$ TAUQ2(P+I), X22(P+I,Q+I+1), LDX22, WORK )
|
|
END IF
|
|
*
|
|
*
|
|
END DO
|
|
*
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SORBDB
|
|
*
|
|
END
|
|
|
|
|