You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
392 lines
11 KiB
392 lines
11 KiB
*> \brief \b SPTRFS
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SPTRFS + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sptrfs.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sptrfs.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sptrfs.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
|
|
* BERR, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDB, LDX, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
|
|
* $ E( * ), EF( * ), FERR( * ), WORK( * ),
|
|
* $ X( LDX, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SPTRFS improves the computed solution to a system of linear
|
|
*> equations when the coefficient matrix is symmetric positive definite
|
|
*> and tridiagonal, and provides error bounds and backward error
|
|
*> estimates for the solution.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrix B. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> The n diagonal elements of the tridiagonal matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (N-1)
|
|
*> The (n-1) subdiagonal elements of the tridiagonal matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DF
|
|
*> \verbatim
|
|
*> DF is REAL array, dimension (N)
|
|
*> The n diagonal elements of the diagonal matrix D from the
|
|
*> factorization computed by SPTTRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] EF
|
|
*> \verbatim
|
|
*> EF is REAL array, dimension (N-1)
|
|
*> The (n-1) subdiagonal elements of the unit bidiagonal factor
|
|
*> L from the factorization computed by SPTTRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB,NRHS)
|
|
*> The right hand side matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X
|
|
*> \verbatim
|
|
*> X is REAL array, dimension (LDX,NRHS)
|
|
*> On entry, the solution matrix X, as computed by SPTTRS.
|
|
*> On exit, the improved solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX
|
|
*> \verbatim
|
|
*> LDX is INTEGER
|
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] FERR
|
|
*> \verbatim
|
|
*> FERR is REAL array, dimension (NRHS)
|
|
*> The forward error bound for each solution vector
|
|
*> X(j) (the j-th column of the solution matrix X).
|
|
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
|
|
*> is an estimated upper bound for the magnitude of the largest
|
|
*> element in (X(j) - XTRUE) divided by the magnitude of the
|
|
*> largest element in X(j).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BERR
|
|
*> \verbatim
|
|
*> BERR is REAL array, dimension (NRHS)
|
|
*> The componentwise relative backward error of each solution
|
|
*> vector X(j) (i.e., the smallest relative change in
|
|
*> any element of A or B that makes X(j) an exact solution).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
*> \par Internal Parameters:
|
|
* =========================
|
|
*>
|
|
*> \verbatim
|
|
*> ITMAX is the maximum number of steps of iterative refinement.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realPTcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
|
|
$ BERR, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDB, LDX, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
|
|
$ E( * ), EF( * ), FERR( * ), WORK( * ),
|
|
$ X( LDX, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER ITMAX
|
|
PARAMETER ( ITMAX = 5 )
|
|
REAL ZERO
|
|
PARAMETER ( ZERO = 0.0E+0 )
|
|
REAL ONE
|
|
PARAMETER ( ONE = 1.0E+0 )
|
|
REAL TWO
|
|
PARAMETER ( TWO = 2.0E+0 )
|
|
REAL THREE
|
|
PARAMETER ( THREE = 3.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER COUNT, I, IX, J, NZ
|
|
REAL BI, CX, DX, EPS, EX, LSTRES, S, SAFE1, SAFE2,
|
|
$ SAFMIN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SAXPY, SPTTRS, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ISAMAX
|
|
REAL SLAMCH
|
|
EXTERNAL ISAMAX, SLAMCH
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( NRHS.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
|
|
INFO = -10
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SPTRFS', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
|
|
DO 10 J = 1, NRHS
|
|
FERR( J ) = ZERO
|
|
BERR( J ) = ZERO
|
|
10 CONTINUE
|
|
RETURN
|
|
END IF
|
|
*
|
|
* NZ = maximum number of nonzero elements in each row of A, plus 1
|
|
*
|
|
NZ = 4
|
|
EPS = SLAMCH( 'Epsilon' )
|
|
SAFMIN = SLAMCH( 'Safe minimum' )
|
|
SAFE1 = NZ*SAFMIN
|
|
SAFE2 = SAFE1 / EPS
|
|
*
|
|
* Do for each right hand side
|
|
*
|
|
DO 90 J = 1, NRHS
|
|
*
|
|
COUNT = 1
|
|
LSTRES = THREE
|
|
20 CONTINUE
|
|
*
|
|
* Loop until stopping criterion is satisfied.
|
|
*
|
|
* Compute residual R = B - A * X. Also compute
|
|
* abs(A)*abs(x) + abs(b) for use in the backward error bound.
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
BI = B( 1, J )
|
|
DX = D( 1 )*X( 1, J )
|
|
WORK( N+1 ) = BI - DX
|
|
WORK( 1 ) = ABS( BI ) + ABS( DX )
|
|
ELSE
|
|
BI = B( 1, J )
|
|
DX = D( 1 )*X( 1, J )
|
|
EX = E( 1 )*X( 2, J )
|
|
WORK( N+1 ) = BI - DX - EX
|
|
WORK( 1 ) = ABS( BI ) + ABS( DX ) + ABS( EX )
|
|
DO 30 I = 2, N - 1
|
|
BI = B( I, J )
|
|
CX = E( I-1 )*X( I-1, J )
|
|
DX = D( I )*X( I, J )
|
|
EX = E( I )*X( I+1, J )
|
|
WORK( N+I ) = BI - CX - DX - EX
|
|
WORK( I ) = ABS( BI ) + ABS( CX ) + ABS( DX ) + ABS( EX )
|
|
30 CONTINUE
|
|
BI = B( N, J )
|
|
CX = E( N-1 )*X( N-1, J )
|
|
DX = D( N )*X( N, J )
|
|
WORK( N+N ) = BI - CX - DX
|
|
WORK( N ) = ABS( BI ) + ABS( CX ) + ABS( DX )
|
|
END IF
|
|
*
|
|
* Compute componentwise relative backward error from formula
|
|
*
|
|
* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
|
|
*
|
|
* where abs(Z) is the componentwise absolute value of the matrix
|
|
* or vector Z. If the i-th component of the denominator is less
|
|
* than SAFE2, then SAFE1 is added to the i-th components of the
|
|
* numerator and denominator before dividing.
|
|
*
|
|
S = ZERO
|
|
DO 40 I = 1, N
|
|
IF( WORK( I ).GT.SAFE2 ) THEN
|
|
S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
|
|
ELSE
|
|
S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
|
|
$ ( WORK( I )+SAFE1 ) )
|
|
END IF
|
|
40 CONTINUE
|
|
BERR( J ) = S
|
|
*
|
|
* Test stopping criterion. Continue iterating if
|
|
* 1) The residual BERR(J) is larger than machine epsilon, and
|
|
* 2) BERR(J) decreased by at least a factor of 2 during the
|
|
* last iteration, and
|
|
* 3) At most ITMAX iterations tried.
|
|
*
|
|
IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
|
|
$ COUNT.LE.ITMAX ) THEN
|
|
*
|
|
* Update solution and try again.
|
|
*
|
|
CALL SPTTRS( N, 1, DF, EF, WORK( N+1 ), N, INFO )
|
|
CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
|
|
LSTRES = BERR( J )
|
|
COUNT = COUNT + 1
|
|
GO TO 20
|
|
END IF
|
|
*
|
|
* Bound error from formula
|
|
*
|
|
* norm(X - XTRUE) / norm(X) .le. FERR =
|
|
* norm( abs(inv(A))*
|
|
* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
|
|
*
|
|
* where
|
|
* norm(Z) is the magnitude of the largest component of Z
|
|
* inv(A) is the inverse of A
|
|
* abs(Z) is the componentwise absolute value of the matrix or
|
|
* vector Z
|
|
* NZ is the maximum number of nonzeros in any row of A, plus 1
|
|
* EPS is machine epsilon
|
|
*
|
|
* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
|
|
* is incremented by SAFE1 if the i-th component of
|
|
* abs(A)*abs(X) + abs(B) is less than SAFE2.
|
|
*
|
|
DO 50 I = 1, N
|
|
IF( WORK( I ).GT.SAFE2 ) THEN
|
|
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
|
|
ELSE
|
|
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
|
|
END IF
|
|
50 CONTINUE
|
|
IX = ISAMAX( N, WORK, 1 )
|
|
FERR( J ) = WORK( IX )
|
|
*
|
|
* Estimate the norm of inv(A).
|
|
*
|
|
* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
|
|
*
|
|
* m(i,j) = abs(A(i,j)), i = j,
|
|
* m(i,j) = -abs(A(i,j)), i .ne. j,
|
|
*
|
|
* and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**T.
|
|
*
|
|
* Solve M(L) * x = e.
|
|
*
|
|
WORK( 1 ) = ONE
|
|
DO 60 I = 2, N
|
|
WORK( I ) = ONE + WORK( I-1 )*ABS( EF( I-1 ) )
|
|
60 CONTINUE
|
|
*
|
|
* Solve D * M(L)**T * x = b.
|
|
*
|
|
WORK( N ) = WORK( N ) / DF( N )
|
|
DO 70 I = N - 1, 1, -1
|
|
WORK( I ) = WORK( I ) / DF( I ) + WORK( I+1 )*ABS( EF( I ) )
|
|
70 CONTINUE
|
|
*
|
|
* Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
|
|
*
|
|
IX = ISAMAX( N, WORK, 1 )
|
|
FERR( J ) = FERR( J )*ABS( WORK( IX ) )
|
|
*
|
|
* Normalize error.
|
|
*
|
|
LSTRES = ZERO
|
|
DO 80 I = 1, N
|
|
LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
|
|
80 CONTINUE
|
|
IF( LSTRES.NE.ZERO )
|
|
$ FERR( J ) = FERR( J ) / LSTRES
|
|
*
|
|
90 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SPTRFS
|
|
*
|
|
END
|
|
|