You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
414 lines
13 KiB
414 lines
13 KiB
*> \brief \b SSPGVX
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SSPGVX + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgvx.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgvx.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgvx.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
|
|
* IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
|
|
* IFAIL, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBZ, RANGE, UPLO
|
|
* INTEGER IL, INFO, ITYPE, IU, LDZ, M, N
|
|
* REAL ABSTOL, VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IFAIL( * ), IWORK( * )
|
|
* REAL AP( * ), BP( * ), W( * ), WORK( * ),
|
|
* $ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SSPGVX computes selected eigenvalues, and optionally, eigenvectors
|
|
*> of a real generalized symmetric-definite eigenproblem, of the form
|
|
*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
|
|
*> and B are assumed to be symmetric, stored in packed storage, and B
|
|
*> is also positive definite. Eigenvalues and eigenvectors can be
|
|
*> selected by specifying either a range of values or a range of indices
|
|
*> for the desired eigenvalues.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ITYPE
|
|
*> \verbatim
|
|
*> ITYPE is INTEGER
|
|
*> Specifies the problem type to be solved:
|
|
*> = 1: A*x = (lambda)*B*x
|
|
*> = 2: A*B*x = (lambda)*x
|
|
*> = 3: B*A*x = (lambda)*x
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBZ
|
|
*> \verbatim
|
|
*> JOBZ is CHARACTER*1
|
|
*> = 'N': Compute eigenvalues only;
|
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RANGE
|
|
*> \verbatim
|
|
*> RANGE is CHARACTER*1
|
|
*> = 'A': all eigenvalues will be found.
|
|
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
|
|
*> will be found.
|
|
*> = 'I': the IL-th through IU-th eigenvalues will be found.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A and B are stored;
|
|
*> = 'L': Lower triangle of A and B are stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix pencil (A,B). N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AP
|
|
*> \verbatim
|
|
*> AP is REAL array, dimension (N*(N+1)/2)
|
|
*> On entry, the upper or lower triangle of the symmetric matrix
|
|
*> A, packed columnwise in a linear array. The j-th column of A
|
|
*> is stored in the array AP as follows:
|
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
|
|
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
|
|
*>
|
|
*> On exit, the contents of AP are destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] BP
|
|
*> \verbatim
|
|
*> BP is REAL array, dimension (N*(N+1)/2)
|
|
*> On entry, the upper or lower triangle of the symmetric matrix
|
|
*> B, packed columnwise in a linear array. The j-th column of B
|
|
*> is stored in the array BP as follows:
|
|
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
|
|
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
|
|
*>
|
|
*> On exit, the triangular factor U or L from the Cholesky
|
|
*> factorization B = U**T*U or B = L*L**T, in the same storage
|
|
*> format as B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VL
|
|
*> \verbatim
|
|
*> VL is REAL
|
|
*>
|
|
*> If RANGE='V', the lower bound of the interval to
|
|
*> be searched for eigenvalues. VL < VU.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VU
|
|
*> \verbatim
|
|
*> VU is REAL
|
|
*>
|
|
*> If RANGE='V', the upper bound of the interval to
|
|
*> be searched for eigenvalues. VL < VU.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IL
|
|
*> \verbatim
|
|
*> IL is INTEGER
|
|
*>
|
|
*> If RANGE='I', the index of the
|
|
*> smallest eigenvalue to be returned.
|
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IU
|
|
*> \verbatim
|
|
*> IU is INTEGER
|
|
*>
|
|
*> If RANGE='I', the index of the
|
|
*> largest eigenvalue to be returned.
|
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ABSTOL
|
|
*> \verbatim
|
|
*> ABSTOL is REAL
|
|
*> The absolute error tolerance for the eigenvalues.
|
|
*> An approximate eigenvalue is accepted as converged
|
|
*> when it is determined to lie in an interval [a,b]
|
|
*> of width less than or equal to
|
|
*>
|
|
*> ABSTOL + EPS * max( |a|,|b| ) ,
|
|
*>
|
|
*> where EPS is the machine precision. If ABSTOL is less than
|
|
*> or equal to zero, then EPS*|T| will be used in its place,
|
|
*> where |T| is the 1-norm of the tridiagonal matrix obtained
|
|
*> by reducing A to tridiagonal form.
|
|
*>
|
|
*> Eigenvalues will be computed most accurately when ABSTOL is
|
|
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
|
|
*> If this routine returns with INFO>0, indicating that some
|
|
*> eigenvectors did not converge, try setting ABSTOL to
|
|
*> 2*SLAMCH('S').
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The total number of eigenvalues found. 0 <= M <= N.
|
|
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is REAL array, dimension (N)
|
|
*> On normal exit, the first M elements contain the selected
|
|
*> eigenvalues in ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Z
|
|
*> \verbatim
|
|
*> Z is REAL array, dimension (LDZ, max(1,M))
|
|
*> If JOBZ = 'N', then Z is not referenced.
|
|
*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
|
|
*> contain the orthonormal eigenvectors of the matrix A
|
|
*> corresponding to the selected eigenvalues, with the i-th
|
|
*> column of Z holding the eigenvector associated with W(i).
|
|
*> The eigenvectors are normalized as follows:
|
|
*> if ITYPE = 1 or 2, Z**T*B*Z = I;
|
|
*> if ITYPE = 3, Z**T*inv(B)*Z = I.
|
|
*>
|
|
*> If an eigenvector fails to converge, then that column of Z
|
|
*> contains the latest approximation to the eigenvector, and the
|
|
*> index of the eigenvector is returned in IFAIL.
|
|
*> Note: the user must ensure that at least max(1,M) columns are
|
|
*> supplied in the array Z; if RANGE = 'V', the exact value of M
|
|
*> is not known in advance and an upper bound must be used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
|
*> JOBZ = 'V', LDZ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (8*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (5*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IFAIL
|
|
*> \verbatim
|
|
*> IFAIL is INTEGER array, dimension (N)
|
|
*> If JOBZ = 'V', then if INFO = 0, the first M elements of
|
|
*> IFAIL are zero. If INFO > 0, then IFAIL contains the
|
|
*> indices of the eigenvectors that failed to converge.
|
|
*> If JOBZ = 'N', then IFAIL is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: SPPTRF or SSPEVX returned an error code:
|
|
*> <= N: if INFO = i, SSPEVX failed to converge;
|
|
*> i eigenvectors failed to converge. Their indices
|
|
*> are stored in array IFAIL.
|
|
*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
|
|
*> principal minor of order i of B is not positive.
|
|
*> The factorization of B could not be completed and
|
|
*> no eigenvalues or eigenvectors were computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realOTHEReigen
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
|
|
$ IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
|
|
$ IFAIL, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBZ, RANGE, UPLO
|
|
INTEGER IL, INFO, ITYPE, IU, LDZ, M, N
|
|
REAL ABSTOL, VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IFAIL( * ), IWORK( * )
|
|
REAL AP( * ), BP( * ), W( * ), WORK( * ),
|
|
$ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
LOGICAL ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
|
|
CHARACTER TRANS
|
|
INTEGER J
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SPPTRF, SSPEVX, SSPGST, STPMV, STPSV, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
WANTZ = LSAME( JOBZ, 'V' )
|
|
ALLEIG = LSAME( RANGE, 'A' )
|
|
VALEIG = LSAME( RANGE, 'V' )
|
|
INDEIG = LSAME( RANGE, 'I' )
|
|
*
|
|
INFO = 0
|
|
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE
|
|
IF( VALEIG ) THEN
|
|
IF( N.GT.0 .AND. VU.LE.VL ) THEN
|
|
INFO = -9
|
|
END IF
|
|
ELSE IF( INDEIG ) THEN
|
|
IF( IL.LT.1 ) THEN
|
|
INFO = -10
|
|
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
|
|
INFO = -11
|
|
END IF
|
|
END IF
|
|
END IF
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
|
|
INFO = -16
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SSPGVX', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
M = 0
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Form a Cholesky factorization of B.
|
|
*
|
|
CALL SPPTRF( UPLO, N, BP, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
INFO = N + INFO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Transform problem to standard eigenvalue problem and solve.
|
|
*
|
|
CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
|
|
CALL SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
|
|
$ W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
|
|
*
|
|
IF( WANTZ ) THEN
|
|
*
|
|
* Backtransform eigenvectors to the original problem.
|
|
*
|
|
IF( INFO.GT.0 )
|
|
$ M = INFO - 1
|
|
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
|
|
*
|
|
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
|
|
* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
|
|
*
|
|
IF( UPPER ) THEN
|
|
TRANS = 'N'
|
|
ELSE
|
|
TRANS = 'T'
|
|
END IF
|
|
*
|
|
DO 10 J = 1, M
|
|
CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
|
|
$ 1 )
|
|
10 CONTINUE
|
|
*
|
|
ELSE IF( ITYPE.EQ.3 ) THEN
|
|
*
|
|
* For B*A*x=(lambda)*x;
|
|
* backtransform eigenvectors: x = L*y or U**T*y
|
|
*
|
|
IF( UPPER ) THEN
|
|
TRANS = 'T'
|
|
ELSE
|
|
TRANS = 'N'
|
|
END IF
|
|
*
|
|
DO 20 J = 1, M
|
|
CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
|
|
$ 1 )
|
|
20 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SSPGVX
|
|
*
|
|
END
|
|
|