You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
8.5 KiB
296 lines
8.5 KiB
*> \brief \b SSPTRD
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SSPTRD + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssptrd.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssptrd.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssptrd.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SSPTRD( UPLO, N, AP, D, E, TAU, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL AP( * ), D( * ), E( * ), TAU( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SSPTRD reduces a real symmetric matrix A stored in packed form to
|
|
*> symmetric tridiagonal form T by an orthogonal similarity
|
|
*> transformation: Q**T * A * Q = T.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AP
|
|
*> \verbatim
|
|
*> AP is REAL array, dimension (N*(N+1)/2)
|
|
*> On entry, the upper or lower triangle of the symmetric matrix
|
|
*> A, packed columnwise in a linear array. The j-th column of A
|
|
*> is stored in the array AP as follows:
|
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
|
|
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
|
|
*> On exit, if UPLO = 'U', the diagonal and first superdiagonal
|
|
*> of A are overwritten by the corresponding elements of the
|
|
*> tridiagonal matrix T, and the elements above the first
|
|
*> superdiagonal, with the array TAU, represent the orthogonal
|
|
*> matrix Q as a product of elementary reflectors; if UPLO
|
|
*> = 'L', the diagonal and first subdiagonal of A are over-
|
|
*> written by the corresponding elements of the tridiagonal
|
|
*> matrix T, and the elements below the first subdiagonal, with
|
|
*> the array TAU, represent the orthogonal matrix Q as a product
|
|
*> of elementary reflectors. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> The diagonal elements of the tridiagonal matrix T:
|
|
*> D(i) = A(i,i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (N-1)
|
|
*> The off-diagonal elements of the tridiagonal matrix T:
|
|
*> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is REAL array, dimension (N-1)
|
|
*> The scalar factors of the elementary reflectors (see Further
|
|
*> Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> If UPLO = 'U', the matrix Q is represented as a product of elementary
|
|
*> reflectors
|
|
*>
|
|
*> Q = H(n-1) . . . H(2) H(1).
|
|
*>
|
|
*> Each H(i) has the form
|
|
*>
|
|
*> H(i) = I - tau * v * v**T
|
|
*>
|
|
*> where tau is a real scalar, and v is a real vector with
|
|
*> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
|
|
*> overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
|
|
*>
|
|
*> If UPLO = 'L', the matrix Q is represented as a product of elementary
|
|
*> reflectors
|
|
*>
|
|
*> Q = H(1) H(2) . . . H(n-1).
|
|
*>
|
|
*> Each H(i) has the form
|
|
*>
|
|
*> H(i) = I - tau * v * v**T
|
|
*>
|
|
*> where tau is a real scalar, and v is a real vector with
|
|
*> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
|
|
*> overwriting A(i+2:n,i), and tau is stored in TAU(i).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SSPTRD( UPLO, N, AP, D, E, TAU, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL AP( * ), D( * ), E( * ), TAU( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO, HALF
|
|
PARAMETER ( ONE = 1.0, ZERO = 0.0, HALF = 1.0 / 2.0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER I, I1, I1I1, II
|
|
REAL ALPHA, TAUI
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SAXPY, SLARFG, SSPMV, SSPR2, XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
REAL SDOT
|
|
EXTERNAL LSAME, SDOT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SSPTRD', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 )
|
|
$ RETURN
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Reduce the upper triangle of A.
|
|
* I1 is the index in AP of A(1,I+1).
|
|
*
|
|
I1 = N*( N-1 ) / 2 + 1
|
|
DO 10 I = N - 1, 1, -1
|
|
*
|
|
* Generate elementary reflector H(i) = I - tau * v * v**T
|
|
* to annihilate A(1:i-1,i+1)
|
|
*
|
|
CALL SLARFG( I, AP( I1+I-1 ), AP( I1 ), 1, TAUI )
|
|
E( I ) = AP( I1+I-1 )
|
|
*
|
|
IF( TAUI.NE.ZERO ) THEN
|
|
*
|
|
* Apply H(i) from both sides to A(1:i,1:i)
|
|
*
|
|
AP( I1+I-1 ) = ONE
|
|
*
|
|
* Compute y := tau * A * v storing y in TAU(1:i)
|
|
*
|
|
CALL SSPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
|
|
$ 1 )
|
|
*
|
|
* Compute w := y - 1/2 * tau * (y**T *v) * v
|
|
*
|
|
ALPHA = -HALF*TAUI*SDOT( I, TAU, 1, AP( I1 ), 1 )
|
|
CALL SAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
|
|
*
|
|
* Apply the transformation as a rank-2 update:
|
|
* A := A - v * w**T - w * v**T
|
|
*
|
|
CALL SSPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
|
|
*
|
|
AP( I1+I-1 ) = E( I )
|
|
END IF
|
|
D( I+1 ) = AP( I1+I )
|
|
TAU( I ) = TAUI
|
|
I1 = I1 - I
|
|
10 CONTINUE
|
|
D( 1 ) = AP( 1 )
|
|
ELSE
|
|
*
|
|
* Reduce the lower triangle of A. II is the index in AP of
|
|
* A(i,i) and I1I1 is the index of A(i+1,i+1).
|
|
*
|
|
II = 1
|
|
DO 20 I = 1, N - 1
|
|
I1I1 = II + N - I + 1
|
|
*
|
|
* Generate elementary reflector H(i) = I - tau * v * v**T
|
|
* to annihilate A(i+2:n,i)
|
|
*
|
|
CALL SLARFG( N-I, AP( II+1 ), AP( II+2 ), 1, TAUI )
|
|
E( I ) = AP( II+1 )
|
|
*
|
|
IF( TAUI.NE.ZERO ) THEN
|
|
*
|
|
* Apply H(i) from both sides to A(i+1:n,i+1:n)
|
|
*
|
|
AP( II+1 ) = ONE
|
|
*
|
|
* Compute y := tau * A * v storing y in TAU(i:n-1)
|
|
*
|
|
CALL SSPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
|
|
$ ZERO, TAU( I ), 1 )
|
|
*
|
|
* Compute w := y - 1/2 * tau * (y**T *v) * v
|
|
*
|
|
ALPHA = -HALF*TAUI*SDOT( N-I, TAU( I ), 1, AP( II+1 ),
|
|
$ 1 )
|
|
CALL SAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
|
|
*
|
|
* Apply the transformation as a rank-2 update:
|
|
* A := A - v * w**T - w * v**T
|
|
*
|
|
CALL SSPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
|
|
$ AP( I1I1 ) )
|
|
*
|
|
AP( II+1 ) = E( I )
|
|
END IF
|
|
D( I ) = AP( II )
|
|
TAU( I ) = TAUI
|
|
II = I1I1
|
|
20 CONTINUE
|
|
D( N ) = AP( II )
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SSPTRD
|
|
*
|
|
END
|
|
|