You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
5.2 KiB
199 lines
5.2 KiB
*> \brief \b ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZGELQ2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelq2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelq2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelq2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZGELQ2 computes an LQ factorization of a complex m-by-n matrix A:
|
|
*>
|
|
*> A = ( L 0 ) * Q
|
|
*>
|
|
*> where:
|
|
*>
|
|
*> Q is a n-by-n orthogonal matrix;
|
|
*> L is a lower-triangular m-by-m matrix;
|
|
*> 0 is a m-by-(n-m) zero matrix, if m < n.
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the m by n matrix A.
|
|
*> On exit, the elements on and below the diagonal of the array
|
|
*> contain the m by min(m,n) lower trapezoidal matrix L (L is
|
|
*> lower triangular if m <= n); the elements above the diagonal,
|
|
*> with the array TAU, represent the unitary matrix Q as a
|
|
*> product of elementary reflectors (see Further Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX*16 array, dimension (min(M,N))
|
|
*> The scalar factors of the elementary reflectors (see Further
|
|
*> Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (M)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The matrix Q is represented as a product of elementary reflectors
|
|
*>
|
|
*> Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
|
|
*>
|
|
*> Each H(i) has the form
|
|
*>
|
|
*> H(i) = I - tau * v * v**H
|
|
*>
|
|
*> where tau is a complex scalar, and v is a complex vector with
|
|
*> v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
|
|
*> A(i,i+1:n), and tau in TAU(i).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 ONE
|
|
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, K
|
|
COMPLEX*16 ALPHA
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZLACGV, ZLARF, ZLARFG
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZGELQ2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
K = MIN( M, N )
|
|
*
|
|
DO 10 I = 1, K
|
|
*
|
|
* Generate elementary reflector H(i) to annihilate A(i,i+1:n)
|
|
*
|
|
CALL ZLACGV( N-I+1, A( I, I ), LDA )
|
|
ALPHA = A( I, I )
|
|
CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
|
|
$ TAU( I ) )
|
|
IF( I.LT.M ) THEN
|
|
*
|
|
* Apply H(i) to A(i+1:m,i:n) from the right
|
|
*
|
|
A( I, I ) = ONE
|
|
CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ),
|
|
$ A( I+1, I ), LDA, WORK )
|
|
END IF
|
|
A( I, I ) = ALPHA
|
|
CALL ZLACGV( N-I+1, A( I, I ), LDA )
|
|
10 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of ZGELQ2
|
|
*
|
|
END
|
|
|