You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
288 lines
7.8 KiB
288 lines
7.8 KiB
*> \brief \b ZGEMQRT
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZGEMQRT + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgemqrt.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgemqrt.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgemqrt.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT,
|
|
* C, LDC, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER SIDE, TRANS
|
|
* INTEGER INFO, K, LDV, LDC, M, N, NB, LDT
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZGEMQRT overwrites the general complex M-by-N matrix C with
|
|
*>
|
|
*> SIDE = 'L' SIDE = 'R'
|
|
*> TRANS = 'N': Q C C Q
|
|
*> TRANS = 'C': Q**H C C Q**H
|
|
*>
|
|
*> where Q is a complex orthogonal matrix defined as the product of K
|
|
*> elementary reflectors:
|
|
*>
|
|
*> Q = H(1) H(2) . . . H(K) = I - V T V**H
|
|
*>
|
|
*> generated using the compact WY representation as returned by ZGEQRT.
|
|
*>
|
|
*> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> = 'L': apply Q or Q**H from the Left;
|
|
*> = 'R': apply Q or Q**H from the Right.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> = 'N': No transpose, apply Q;
|
|
*> = 'C': Conjugate transpose, apply Q**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix C. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix C. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of elementary reflectors whose product defines
|
|
*> the matrix Q.
|
|
*> If SIDE = 'L', M >= K >= 0;
|
|
*> if SIDE = 'R', N >= K >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NB
|
|
*> \verbatim
|
|
*> NB is INTEGER
|
|
*> The block size used for the storage of T. K >= NB >= 1.
|
|
*> This must be the same value of NB used to generate T
|
|
*> in ZGEQRT.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] V
|
|
*> \verbatim
|
|
*> V is COMPLEX*16 array, dimension (LDV,K)
|
|
*> The i-th column must contain the vector which defines the
|
|
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
|
|
*> ZGEQRT in the first K columns of its array argument A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of the array V.
|
|
*> If SIDE = 'L', LDA >= max(1,M);
|
|
*> if SIDE = 'R', LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] T
|
|
*> \verbatim
|
|
*> T is COMPLEX*16 array, dimension (LDT,K)
|
|
*> The upper triangular factors of the block reflectors
|
|
*> as returned by ZGEQRT, stored as a NB-by-N matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T. LDT >= NB.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is COMPLEX*16 array, dimension (LDC,N)
|
|
*> On entry, the M-by-N matrix C.
|
|
*> On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the array C. LDC >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array. The dimension of WORK is
|
|
*> N*NB if SIDE = 'L', or M*NB if SIDE = 'R'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GEcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT,
|
|
$ C, LDC, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER SIDE, TRANS
|
|
INTEGER INFO, K, LDV, LDC, M, N, NB, LDT
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LEFT, RIGHT, TRAN, NOTRAN
|
|
INTEGER I, IB, LDWORK, KF, Q
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZLARFB
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* .. Test the input arguments ..
|
|
*
|
|
INFO = 0
|
|
LEFT = LSAME( SIDE, 'L' )
|
|
RIGHT = LSAME( SIDE, 'R' )
|
|
TRAN = LSAME( TRANS, 'C' )
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
*
|
|
IF( LEFT ) THEN
|
|
LDWORK = MAX( 1, N )
|
|
Q = M
|
|
ELSE IF ( RIGHT ) THEN
|
|
LDWORK = MAX( 1, M )
|
|
Q = N
|
|
END IF
|
|
IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
|
|
INFO = -2
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( K.LT.0 .OR. K.GT.Q ) THEN
|
|
INFO = -5
|
|
ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0)) THEN
|
|
INFO = -6
|
|
ELSE IF( LDV.LT.MAX( 1, Q ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDT.LT.NB ) THEN
|
|
INFO = -10
|
|
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
|
|
INFO = -12
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZGEMQRT', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* .. Quick return if possible ..
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
|
|
*
|
|
IF( LEFT .AND. TRAN ) THEN
|
|
*
|
|
DO I = 1, K, NB
|
|
IB = MIN( NB, K-I+1 )
|
|
CALL ZLARFB( 'L', 'C', 'F', 'C', M-I+1, N, IB,
|
|
$ V( I, I ), LDV, T( 1, I ), LDT,
|
|
$ C( I, 1 ), LDC, WORK, LDWORK )
|
|
END DO
|
|
*
|
|
ELSE IF( RIGHT .AND. NOTRAN ) THEN
|
|
*
|
|
DO I = 1, K, NB
|
|
IB = MIN( NB, K-I+1 )
|
|
CALL ZLARFB( 'R', 'N', 'F', 'C', M, N-I+1, IB,
|
|
$ V( I, I ), LDV, T( 1, I ), LDT,
|
|
$ C( 1, I ), LDC, WORK, LDWORK )
|
|
END DO
|
|
*
|
|
ELSE IF( LEFT .AND. NOTRAN ) THEN
|
|
*
|
|
KF = ((K-1)/NB)*NB+1
|
|
DO I = KF, 1, -NB
|
|
IB = MIN( NB, K-I+1 )
|
|
CALL ZLARFB( 'L', 'N', 'F', 'C', M-I+1, N, IB,
|
|
$ V( I, I ), LDV, T( 1, I ), LDT,
|
|
$ C( I, 1 ), LDC, WORK, LDWORK )
|
|
END DO
|
|
*
|
|
ELSE IF( RIGHT .AND. TRAN ) THEN
|
|
*
|
|
KF = ((K-1)/NB)*NB+1
|
|
DO I = KF, 1, -NB
|
|
IB = MIN( NB, K-I+1 )
|
|
CALL ZLARFB( 'R', 'C', 'F', 'C', M, N-I+1, IB,
|
|
$ V( I, I ), LDV, T( 1, I ), LDT,
|
|
$ C( 1, I ), LDC, WORK, LDWORK )
|
|
END DO
|
|
*
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZGEMQRT
|
|
*
|
|
END
|
|
|