You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
254 lines
7.1 KiB
254 lines
7.1 KiB
*> \brief \b ZGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZGEQRT3 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqrt3.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqrt3.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqrt3.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* RECURSIVE SUBROUTINE ZGEQRT3( M, N, A, LDA, T, LDT, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, M, N, LDT
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), T( LDT, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZGEQRT3 recursively computes a QR factorization of a complex M-by-N
|
|
*> matrix A, using the compact WY representation of Q.
|
|
*>
|
|
*> Based on the algorithm of Elmroth and Gustavson,
|
|
*> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the complex M-by-N matrix A. On exit, the elements on
|
|
*> and above the diagonal contain the N-by-N upper triangular matrix R;
|
|
*> the elements below the diagonal are the columns of V. See below for
|
|
*> further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] T
|
|
*> \verbatim
|
|
*> T is COMPLEX*16 array, dimension (LDT,N)
|
|
*> The N-by-N upper triangular factor of the block reflector.
|
|
*> The elements on and above the diagonal contain the block
|
|
*> reflector T; the elements below the diagonal are not used.
|
|
*> See below for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T. LDT >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The matrix V stores the elementary reflectors H(i) in the i-th column
|
|
*> below the diagonal. For example, if M=5 and N=3, the matrix V is
|
|
*>
|
|
*> V = ( 1 )
|
|
*> ( v1 1 )
|
|
*> ( v1 v2 1 )
|
|
*> ( v1 v2 v3 )
|
|
*> ( v1 v2 v3 )
|
|
*>
|
|
*> where the vi's represent the vectors which define H(i), which are returned
|
|
*> in the matrix A. The 1's along the diagonal of V are not stored in A. The
|
|
*> block reflector H is then given by
|
|
*>
|
|
*> H = I - V * T * V**H
|
|
*>
|
|
*> where V**H is the conjugate transpose of V.
|
|
*>
|
|
*> For details of the algorithm, see Elmroth and Gustavson (cited above).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
RECURSIVE SUBROUTINE ZGEQRT3( M, N, A, LDA, T, LDT, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, M, N, LDT
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), T( LDT, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 ONE
|
|
PARAMETER ( ONE = (1.0D+00,0.0D+00) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, I1, J, J1, N1, N2, IINFO
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZLARFG, ZTRMM, ZGEMM, XERBLA
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
IF( N .LT. 0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( M .LT. N ) THEN
|
|
INFO = -1
|
|
ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDT .LT. MAX( 1, N ) ) THEN
|
|
INFO = -6
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZGEQRT3', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
*
|
|
* Compute Householder transform when N=1
|
|
*
|
|
CALL ZLARFG( M, A(1,1), A( MIN( 2, M ), 1 ), 1, T(1,1) )
|
|
*
|
|
ELSE
|
|
*
|
|
* Otherwise, split A into blocks...
|
|
*
|
|
N1 = N/2
|
|
N2 = N-N1
|
|
J1 = MIN( N1+1, N )
|
|
I1 = MIN( N+1, M )
|
|
*
|
|
* Compute A(1:M,1:N1) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
|
|
*
|
|
CALL ZGEQRT3( M, N1, A, LDA, T, LDT, IINFO )
|
|
*
|
|
* Compute A(1:M,J1:N) = Q1^H A(1:M,J1:N) [workspace: T(1:N1,J1:N)]
|
|
*
|
|
DO J=1,N2
|
|
DO I=1,N1
|
|
T( I, J+N1 ) = A( I, J+N1 )
|
|
END DO
|
|
END DO
|
|
CALL ZTRMM( 'L', 'L', 'C', 'U', N1, N2, ONE,
|
|
& A, LDA, T( 1, J1 ), LDT )
|
|
*
|
|
CALL ZGEMM( 'C', 'N', N1, N2, M-N1, ONE, A( J1, 1 ), LDA,
|
|
& A( J1, J1 ), LDA, ONE, T( 1, J1 ), LDT)
|
|
*
|
|
CALL ZTRMM( 'L', 'U', 'C', 'N', N1, N2, ONE,
|
|
& T, LDT, T( 1, J1 ), LDT )
|
|
*
|
|
CALL ZGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( J1, 1 ), LDA,
|
|
& T( 1, J1 ), LDT, ONE, A( J1, J1 ), LDA )
|
|
*
|
|
CALL ZTRMM( 'L', 'L', 'N', 'U', N1, N2, ONE,
|
|
& A, LDA, T( 1, J1 ), LDT )
|
|
*
|
|
DO J=1,N2
|
|
DO I=1,N1
|
|
A( I, J+N1 ) = A( I, J+N1 ) - T( I, J+N1 )
|
|
END DO
|
|
END DO
|
|
*
|
|
* Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
|
|
*
|
|
CALL ZGEQRT3( M-N1, N2, A( J1, J1 ), LDA,
|
|
& T( J1, J1 ), LDT, IINFO )
|
|
*
|
|
* Compute T3 = T(1:N1,J1:N) = -T1 Y1^H Y2 T2
|
|
*
|
|
DO I=1,N1
|
|
DO J=1,N2
|
|
T( I, J+N1 ) = CONJG(A( J+N1, I ))
|
|
END DO
|
|
END DO
|
|
*
|
|
CALL ZTRMM( 'R', 'L', 'N', 'U', N1, N2, ONE,
|
|
& A( J1, J1 ), LDA, T( 1, J1 ), LDT )
|
|
*
|
|
CALL ZGEMM( 'C', 'N', N1, N2, M-N, ONE, A( I1, 1 ), LDA,
|
|
& A( I1, J1 ), LDA, ONE, T( 1, J1 ), LDT )
|
|
*
|
|
CALL ZTRMM( 'L', 'U', 'N', 'N', N1, N2, -ONE, T, LDT,
|
|
& T( 1, J1 ), LDT )
|
|
*
|
|
CALL ZTRMM( 'R', 'U', 'N', 'N', N1, N2, ONE,
|
|
& T( J1, J1 ), LDT, T( 1, J1 ), LDT )
|
|
*
|
|
* Y = (Y1,Y2); R = [ R1 A(1:N1,J1:N) ]; T = [T1 T3]
|
|
* [ 0 R2 ] [ 0 T2]
|
|
*
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZGEQRT3
|
|
*
|
|
END
|
|
|