You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
594 lines
19 KiB
594 lines
19 KiB
*> \brief <b> ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZGGES + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
|
|
* SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
|
|
* LWORK, RWORK, BWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBVSL, JOBVSR, SORT
|
|
* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL BWORK( * )
|
|
* DOUBLE PRECISION RWORK( * )
|
|
* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
|
* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
|
|
* $ WORK( * )
|
|
* ..
|
|
* .. Function Arguments ..
|
|
* LOGICAL SELCTG
|
|
* EXTERNAL SELCTG
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
|
|
*> (A,B), the generalized eigenvalues, the generalized complex Schur
|
|
*> form (S, T), and optionally left and/or right Schur vectors (VSL
|
|
*> and VSR). This gives the generalized Schur factorization
|
|
*>
|
|
*> (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
|
|
*>
|
|
*> where (VSR)**H is the conjugate-transpose of VSR.
|
|
*>
|
|
*> Optionally, it also orders the eigenvalues so that a selected cluster
|
|
*> of eigenvalues appears in the leading diagonal blocks of the upper
|
|
*> triangular matrix S and the upper triangular matrix T. The leading
|
|
*> columns of VSL and VSR then form an unitary basis for the
|
|
*> corresponding left and right eigenspaces (deflating subspaces).
|
|
*>
|
|
*> (If only the generalized eigenvalues are needed, use the driver
|
|
*> ZGGEV instead, which is faster.)
|
|
*>
|
|
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
|
|
*> or a ratio alpha/beta = w, such that A - w*B is singular. It is
|
|
*> usually represented as the pair (alpha,beta), as there is a
|
|
*> reasonable interpretation for beta=0, and even for both being zero.
|
|
*>
|
|
*> A pair of matrices (S,T) is in generalized complex Schur form if S
|
|
*> and T are upper triangular and, in addition, the diagonal elements
|
|
*> of T are non-negative real numbers.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBVSL
|
|
*> \verbatim
|
|
*> JOBVSL is CHARACTER*1
|
|
*> = 'N': do not compute the left Schur vectors;
|
|
*> = 'V': compute the left Schur vectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBVSR
|
|
*> \verbatim
|
|
*> JOBVSR is CHARACTER*1
|
|
*> = 'N': do not compute the right Schur vectors;
|
|
*> = 'V': compute the right Schur vectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SORT
|
|
*> \verbatim
|
|
*> SORT is CHARACTER*1
|
|
*> Specifies whether or not to order the eigenvalues on the
|
|
*> diagonal of the generalized Schur form.
|
|
*> = 'N': Eigenvalues are not ordered;
|
|
*> = 'S': Eigenvalues are ordered (see SELCTG).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SELCTG
|
|
*> \verbatim
|
|
*> SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
|
|
*> SELCTG must be declared EXTERNAL in the calling subroutine.
|
|
*> If SORT = 'N', SELCTG is not referenced.
|
|
*> If SORT = 'S', SELCTG is used to select eigenvalues to sort
|
|
*> to the top left of the Schur form.
|
|
*> An eigenvalue ALPHA(j)/BETA(j) is selected if
|
|
*> SELCTG(ALPHA(j),BETA(j)) is true.
|
|
*>
|
|
*> Note that a selected complex eigenvalue may no longer satisfy
|
|
*> SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
|
|
*> ordering may change the value of complex eigenvalues
|
|
*> (especially if the eigenvalue is ill-conditioned), in this
|
|
*> case INFO is set to N+2 (See INFO below).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrices A, B, VSL, and VSR. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA, N)
|
|
*> On entry, the first of the pair of matrices.
|
|
*> On exit, A has been overwritten by its generalized Schur
|
|
*> form S.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX*16 array, dimension (LDB, N)
|
|
*> On entry, the second of the pair of matrices.
|
|
*> On exit, B has been overwritten by its generalized Schur
|
|
*> form T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SDIM
|
|
*> \verbatim
|
|
*> SDIM is INTEGER
|
|
*> If SORT = 'N', SDIM = 0.
|
|
*> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
|
|
*> for which SELCTG is true.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is COMPLEX*16 array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BETA
|
|
*> \verbatim
|
|
*> BETA is COMPLEX*16 array, dimension (N)
|
|
*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
|
|
*> generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j),
|
|
*> j=1,...,N are the diagonals of the complex Schur form (A,B)
|
|
*> output by ZGGES. The BETA(j) will be non-negative real.
|
|
*>
|
|
*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
|
|
*> underflow, and BETA(j) may even be zero. Thus, the user
|
|
*> should avoid naively computing the ratio alpha/beta.
|
|
*> However, ALPHA will be always less than and usually
|
|
*> comparable with norm(A) in magnitude, and BETA always less
|
|
*> than and usually comparable with norm(B).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VSL
|
|
*> \verbatim
|
|
*> VSL is COMPLEX*16 array, dimension (LDVSL,N)
|
|
*> If JOBVSL = 'V', VSL will contain the left Schur vectors.
|
|
*> Not referenced if JOBVSL = 'N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVSL
|
|
*> \verbatim
|
|
*> LDVSL is INTEGER
|
|
*> The leading dimension of the matrix VSL. LDVSL >= 1, and
|
|
*> if JOBVSL = 'V', LDVSL >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VSR
|
|
*> \verbatim
|
|
*> VSR is COMPLEX*16 array, dimension (LDVSR,N)
|
|
*> If JOBVSR = 'V', VSR will contain the right Schur vectors.
|
|
*> Not referenced if JOBVSR = 'N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVSR
|
|
*> \verbatim
|
|
*> LDVSR is INTEGER
|
|
*> The leading dimension of the matrix VSR. LDVSR >= 1, and
|
|
*> if JOBVSR = 'V', LDVSR >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,2*N).
|
|
*> For good performance, LWORK must generally be larger.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (8*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BWORK
|
|
*> \verbatim
|
|
*> BWORK is LOGICAL array, dimension (N)
|
|
*> Not referenced if SORT = 'N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> =1,...,N:
|
|
*> The QZ iteration failed. (A,B) are not in Schur
|
|
*> form, but ALPHA(j) and BETA(j) should be correct for
|
|
*> j=INFO+1,...,N.
|
|
*> > N: =N+1: other than QZ iteration failed in ZHGEQZ
|
|
*> =N+2: after reordering, roundoff changed values of
|
|
*> some complex eigenvalues so that leading
|
|
*> eigenvalues in the Generalized Schur form no
|
|
*> longer satisfy SELCTG=.TRUE. This could also
|
|
*> be caused due to scaling.
|
|
*> =N+3: reordering failed in ZTGSEN.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GEeigen
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
|
|
$ SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
|
|
$ LWORK, RWORK, BWORK, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBVSL, JOBVSR, SORT
|
|
INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL BWORK( * )
|
|
DOUBLE PRECISION RWORK( * )
|
|
COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
|
$ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
|
|
$ WORK( * )
|
|
* ..
|
|
* .. Function Arguments ..
|
|
LOGICAL SELCTG
|
|
EXTERNAL SELCTG
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
COMPLEX*16 CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
|
|
$ CONE = ( 1.0D0, 0.0D0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
|
|
$ LQUERY, WANTST
|
|
INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
|
|
$ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
|
|
$ LWKOPT
|
|
DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
|
|
$ PVSR, SMLNUM
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER IDUM( 1 )
|
|
DOUBLE PRECISION DIF( 2 )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
|
|
$ ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR, ZUNMQR
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
DOUBLE PRECISION DLAMCH, ZLANGE
|
|
EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode the input arguments
|
|
*
|
|
IF( LSAME( JOBVSL, 'N' ) ) THEN
|
|
IJOBVL = 1
|
|
ILVSL = .FALSE.
|
|
ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
|
|
IJOBVL = 2
|
|
ILVSL = .TRUE.
|
|
ELSE
|
|
IJOBVL = -1
|
|
ILVSL = .FALSE.
|
|
END IF
|
|
*
|
|
IF( LSAME( JOBVSR, 'N' ) ) THEN
|
|
IJOBVR = 1
|
|
ILVSR = .FALSE.
|
|
ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
|
|
IJOBVR = 2
|
|
ILVSR = .TRUE.
|
|
ELSE
|
|
IJOBVR = -1
|
|
ILVSR = .FALSE.
|
|
END IF
|
|
*
|
|
WANTST = LSAME( SORT, 'S' )
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( IJOBVL.LE.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( IJOBVR.LE.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
|
|
INFO = -14
|
|
ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
|
|
INFO = -16
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
* (Note: Comments in the code beginning "Workspace:" describe the
|
|
* minimal amount of workspace needed at that point in the code,
|
|
* as well as the preferred amount for good performance.
|
|
* NB refers to the optimal block size for the immediately
|
|
* following subroutine, as returned by ILAENV.)
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
LWKMIN = MAX( 1, 2*N )
|
|
LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
|
|
LWKOPT = MAX( LWKOPT, N +
|
|
$ N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) )
|
|
IF( ILVSL ) THEN
|
|
LWKOPT = MAX( LWKOPT, N +
|
|
$ N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
|
|
END IF
|
|
WORK( 1 ) = LWKOPT
|
|
*
|
|
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
|
|
$ INFO = -18
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZGGES ', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
SDIM = 0
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Get machine constants
|
|
*
|
|
EPS = DLAMCH( 'P' )
|
|
SMLNUM = DLAMCH( 'S' )
|
|
BIGNUM = ONE / SMLNUM
|
|
SMLNUM = SQRT( SMLNUM ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
|
|
ILASCL = .FALSE.
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
|
ANRMTO = SMLNUM
|
|
ILASCL = .TRUE.
|
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
|
ANRMTO = BIGNUM
|
|
ILASCL = .TRUE.
|
|
END IF
|
|
*
|
|
IF( ILASCL )
|
|
$ CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
|
|
*
|
|
* Scale B if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
|
|
ILBSCL = .FALSE.
|
|
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
|
|
BNRMTO = SMLNUM
|
|
ILBSCL = .TRUE.
|
|
ELSE IF( BNRM.GT.BIGNUM ) THEN
|
|
BNRMTO = BIGNUM
|
|
ILBSCL = .TRUE.
|
|
END IF
|
|
*
|
|
IF( ILBSCL )
|
|
$ CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
|
|
*
|
|
* Permute the matrix to make it more nearly triangular
|
|
* (Real Workspace: need 6*N)
|
|
*
|
|
ILEFT = 1
|
|
IRIGHT = N + 1
|
|
IRWRK = IRIGHT + N
|
|
CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
|
|
$ RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
|
|
*
|
|
* Reduce B to triangular form (QR decomposition of B)
|
|
* (Complex Workspace: need N, prefer N*NB)
|
|
*
|
|
IROWS = IHI + 1 - ILO
|
|
ICOLS = N + 1 - ILO
|
|
ITAU = 1
|
|
IWRK = ITAU + IROWS
|
|
CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
|
|
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
|
|
*
|
|
* Apply the orthogonal transformation to matrix A
|
|
* (Complex Workspace: need N, prefer N*NB)
|
|
*
|
|
CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
|
|
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
|
|
$ LWORK+1-IWRK, IERR )
|
|
*
|
|
* Initialize VSL
|
|
* (Complex Workspace: need N, prefer N*NB)
|
|
*
|
|
IF( ILVSL ) THEN
|
|
CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
|
|
IF( IROWS.GT.1 ) THEN
|
|
CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
|
|
$ VSL( ILO+1, ILO ), LDVSL )
|
|
END IF
|
|
CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
|
|
$ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
|
|
END IF
|
|
*
|
|
* Initialize VSR
|
|
*
|
|
IF( ILVSR )
|
|
$ CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
|
|
*
|
|
* Reduce to generalized Hessenberg form
|
|
* (Workspace: none needed)
|
|
*
|
|
CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
|
|
$ LDVSL, VSR, LDVSR, IERR )
|
|
*
|
|
SDIM = 0
|
|
*
|
|
* Perform QZ algorithm, computing Schur vectors if desired
|
|
* (Complex Workspace: need N)
|
|
* (Real Workspace: need N)
|
|
*
|
|
IWRK = ITAU
|
|
CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
|
|
$ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
|
|
$ LWORK+1-IWRK, RWORK( IRWRK ), IERR )
|
|
IF( IERR.NE.0 ) THEN
|
|
IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
|
|
INFO = IERR
|
|
ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
|
|
INFO = IERR - N
|
|
ELSE
|
|
INFO = N + 1
|
|
END IF
|
|
GO TO 30
|
|
END IF
|
|
*
|
|
* Sort eigenvalues ALPHA/BETA if desired
|
|
* (Workspace: none needed)
|
|
*
|
|
IF( WANTST ) THEN
|
|
*
|
|
* Undo scaling on eigenvalues before selecting
|
|
*
|
|
IF( ILASCL )
|
|
$ CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
|
|
IF( ILBSCL )
|
|
$ CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
|
|
*
|
|
* Select eigenvalues
|
|
*
|
|
DO 10 I = 1, N
|
|
BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
|
|
10 CONTINUE
|
|
*
|
|
CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
|
|
$ BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
|
|
$ DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
|
|
IF( IERR.EQ.1 )
|
|
$ INFO = N + 3
|
|
*
|
|
END IF
|
|
*
|
|
* Apply back-permutation to VSL and VSR
|
|
* (Workspace: none needed)
|
|
*
|
|
IF( ILVSL )
|
|
$ CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
|
|
$ RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
|
|
IF( ILVSR )
|
|
$ CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
|
|
$ RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
|
|
*
|
|
* Undo scaling
|
|
*
|
|
IF( ILASCL ) THEN
|
|
CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
|
|
CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
|
|
END IF
|
|
*
|
|
IF( ILBSCL ) THEN
|
|
CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
|
|
CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
|
|
END IF
|
|
*
|
|
IF( WANTST ) THEN
|
|
*
|
|
* Check if reordering is correct
|
|
*
|
|
LASTSL = .TRUE.
|
|
SDIM = 0
|
|
DO 20 I = 1, N
|
|
CURSL = SELCTG( ALPHA( I ), BETA( I ) )
|
|
IF( CURSL )
|
|
$ SDIM = SDIM + 1
|
|
IF( CURSL .AND. .NOT.LASTSL )
|
|
$ INFO = N + 2
|
|
LASTSL = CURSL
|
|
20 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
30 CONTINUE
|
|
*
|
|
WORK( 1 ) = LWKOPT
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZGGES
|
|
*
|
|
END
|
|
|