You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
703 lines
25 KiB
703 lines
25 KiB
*> \brief \b ZGSVJ1 pre-processor for the routine zgesvj, applies Jacobi rotations targeting only particular pivots.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZGSVJ1 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgsvj1.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgsvj1.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgsvj1.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
|
|
* EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* DOUBLE PRECISION EPS, SFMIN, TOL
|
|
* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
|
|
* CHARACTER*1 JOBV
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
|
|
* DOUBLE PRECISION SVA( N )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZGSVJ1 is called from ZGESVJ as a pre-processor and that is its main
|
|
*> purpose. It applies Jacobi rotations in the same way as ZGESVJ does, but
|
|
*> it targets only particular pivots and it does not check convergence
|
|
*> (stopping criterion). Few tuning parameters (marked by [TP]) are
|
|
*> available for the implementer.
|
|
*>
|
|
*> Further Details
|
|
*> ~~~~~~~~~~~~~~~
|
|
*> ZGSVJ1 applies few sweeps of Jacobi rotations in the column space of
|
|
*> the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
|
|
*> off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
|
|
*> block-entries (tiles) of the (1,2) off-diagonal block are marked by the
|
|
*> [x]'s in the following scheme:
|
|
*>
|
|
*> | * * * [x] [x] [x]|
|
|
*> | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
|
|
*> | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
|
|
*> |[x] [x] [x] * * * |
|
|
*> |[x] [x] [x] * * * |
|
|
*> |[x] [x] [x] * * * |
|
|
*>
|
|
*> In terms of the columns of A, the first N1 columns are rotated 'against'
|
|
*> the remaining N-N1 columns, trying to increase the angle between the
|
|
*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
|
|
*> tiled using quadratic tiles of side KBL. Here, KBL is a tuning parameter.
|
|
*> The number of sweeps is given in NSWEEP and the orthogonality threshold
|
|
*> is given in TOL.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBV
|
|
*> \verbatim
|
|
*> JOBV is CHARACTER*1
|
|
*> Specifies whether the output from this procedure is used
|
|
*> to compute the matrix V:
|
|
*> = 'V': the product of the Jacobi rotations is accumulated
|
|
*> by postmultiplying the N-by-N array V.
|
|
*> (See the description of V.)
|
|
*> = 'A': the product of the Jacobi rotations is accumulated
|
|
*> by postmultiplying the MV-by-N array V.
|
|
*> (See the descriptions of MV and V.)
|
|
*> = 'N': the Jacobi rotations are not accumulated.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the input matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the input matrix A.
|
|
*> M >= N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N1
|
|
*> \verbatim
|
|
*> N1 is INTEGER
|
|
*> N1 specifies the 2 x 2 block partition, the first N1 columns are
|
|
*> rotated 'against' the remaining N-N1 columns of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, M-by-N matrix A, such that A*diag(D) represents
|
|
*> the input matrix.
|
|
*> On exit,
|
|
*> A_onexit * D_onexit represents the input matrix A*diag(D)
|
|
*> post-multiplied by a sequence of Jacobi rotations, where the
|
|
*> rotation threshold and the total number of sweeps are given in
|
|
*> TOL and NSWEEP, respectively.
|
|
*> (See the descriptions of N1, D, TOL and NSWEEP.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is COMPLEX*16 array, dimension (N)
|
|
*> The array D accumulates the scaling factors from the fast scaled
|
|
*> Jacobi rotations.
|
|
*> On entry, A*diag(D) represents the input matrix.
|
|
*> On exit, A_onexit*diag(D_onexit) represents the input matrix
|
|
*> post-multiplied by a sequence of Jacobi rotations, where the
|
|
*> rotation threshold and the total number of sweeps are given in
|
|
*> TOL and NSWEEP, respectively.
|
|
*> (See the descriptions of N1, A, TOL and NSWEEP.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] SVA
|
|
*> \verbatim
|
|
*> SVA is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry, SVA contains the Euclidean norms of the columns of
|
|
*> the matrix A*diag(D).
|
|
*> On exit, SVA contains the Euclidean norms of the columns of
|
|
*> the matrix onexit*diag(D_onexit).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MV
|
|
*> \verbatim
|
|
*> MV is INTEGER
|
|
*> If JOBV = 'A', then MV rows of V are post-multiplied by a
|
|
*> sequence of Jacobi rotations.
|
|
*> If JOBV = 'N', then MV is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] V
|
|
*> \verbatim
|
|
*> V is COMPLEX*16 array, dimension (LDV,N)
|
|
*> If JOBV = 'V' then N rows of V are post-multiplied by a
|
|
*> sequence of Jacobi rotations.
|
|
*> If JOBV = 'A' then MV rows of V are post-multiplied by a
|
|
*> sequence of Jacobi rotations.
|
|
*> If JOBV = 'N', then V is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of the array V, LDV >= 1.
|
|
*> If JOBV = 'V', LDV >= N.
|
|
*> If JOBV = 'A', LDV >= MV.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] EPS
|
|
*> \verbatim
|
|
*> EPS is DOUBLE PRECISION
|
|
*> EPS = DLAMCH('Epsilon')
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SFMIN
|
|
*> \verbatim
|
|
*> SFMIN is DOUBLE PRECISION
|
|
*> SFMIN = DLAMCH('Safe Minimum')
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TOL
|
|
*> \verbatim
|
|
*> TOL is DOUBLE PRECISION
|
|
*> TOL is the threshold for Jacobi rotations. For a pair
|
|
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
|
|
*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NSWEEP
|
|
*> \verbatim
|
|
*> NSWEEP is INTEGER
|
|
*> NSWEEP is the number of sweeps of Jacobi rotations to be
|
|
*> performed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> LWORK is the dimension of WORK. LWORK >= M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, then the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Contributor:
|
|
* ==================
|
|
*>
|
|
*> Zlatko Drmac (Zagreb, Croatia)
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
|
|
$ EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
IMPLICIT NONE
|
|
* .. Scalar Arguments ..
|
|
DOUBLE PRECISION EPS, SFMIN, TOL
|
|
INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
|
|
CHARACTER*1 JOBV
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
|
|
DOUBLE PRECISION SVA( N )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Parameters ..
|
|
DOUBLE PRECISION ZERO, HALF, ONE
|
|
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0)
|
|
* ..
|
|
* .. Local Scalars ..
|
|
COMPLEX*16 AAPQ, OMPQ
|
|
DOUBLE PRECISION AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
|
|
$ BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG,
|
|
$ ROOTEPS, ROOTSFMIN, ROOTTOL, SMALL, SN, T,
|
|
$ TEMP1, THETA, THSIGN
|
|
INTEGER BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK,
|
|
$ ISWROT, jbc, jgl, KBL, MVL, NOTROT, nblc, nblr,
|
|
$ p, PSKIPPED, q, ROWSKIP, SWBAND
|
|
LOGICAL APPLV, ROTOK, RSVEC
|
|
* ..
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, CONJG, MAX, DBLE, MIN, SIGN, SQRT
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DZNRM2
|
|
COMPLEX*16 ZDOTC
|
|
INTEGER IDAMAX
|
|
LOGICAL LSAME
|
|
EXTERNAL IDAMAX, LSAME, ZDOTC, DZNRM2
|
|
* ..
|
|
* .. External Subroutines ..
|
|
* .. from BLAS
|
|
EXTERNAL ZCOPY, ZROT, ZSWAP, ZAXPY
|
|
* .. from LAPACK
|
|
EXTERNAL ZLASCL, ZLASSQ, XERBLA
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
APPLV = LSAME( JOBV, 'A' )
|
|
RSVEC = LSAME( JOBV, 'V' )
|
|
IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( N1.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDA.LT.M ) THEN
|
|
INFO = -6
|
|
ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
|
|
$ ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
|
|
INFO = -11
|
|
ELSE IF( TOL.LE.EPS ) THEN
|
|
INFO = -14
|
|
ELSE IF( NSWEEP.LT.0 ) THEN
|
|
INFO = -15
|
|
ELSE IF( LWORK.LT.M ) THEN
|
|
INFO = -17
|
|
ELSE
|
|
INFO = 0
|
|
END IF
|
|
*
|
|
* #:(
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZGSVJ1', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( RSVEC ) THEN
|
|
MVL = N
|
|
ELSE IF( APPLV ) THEN
|
|
MVL = MV
|
|
END IF
|
|
RSVEC = RSVEC .OR. APPLV
|
|
|
|
ROOTEPS = SQRT( EPS )
|
|
ROOTSFMIN = SQRT( SFMIN )
|
|
SMALL = SFMIN / EPS
|
|
BIG = ONE / SFMIN
|
|
ROOTBIG = ONE / ROOTSFMIN
|
|
* LARGE = BIG / SQRT( DBLE( M*N ) )
|
|
BIGTHETA = ONE / ROOTEPS
|
|
ROOTTOL = SQRT( TOL )
|
|
*
|
|
* .. Initialize the right singular vector matrix ..
|
|
*
|
|
* RSVEC = LSAME( JOBV, 'Y' )
|
|
*
|
|
EMPTSW = N1*( N-N1 )
|
|
NOTROT = 0
|
|
*
|
|
* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
|
|
*
|
|
KBL = MIN( 8, N )
|
|
NBLR = N1 / KBL
|
|
IF( ( NBLR*KBL ).NE.N1 )NBLR = NBLR + 1
|
|
|
|
* .. the tiling is nblr-by-nblc [tiles]
|
|
|
|
NBLC = ( N-N1 ) / KBL
|
|
IF( ( NBLC*KBL ).NE.( N-N1 ) )NBLC = NBLC + 1
|
|
BLSKIP = ( KBL**2 ) + 1
|
|
*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
|
|
|
|
ROWSKIP = MIN( 5, KBL )
|
|
*[TP] ROWSKIP is a tuning parameter.
|
|
SWBAND = 0
|
|
*[TP] SWBAND is a tuning parameter. It is meaningful and effective
|
|
* if ZGESVJ is used as a computational routine in the preconditioned
|
|
* Jacobi SVD algorithm ZGEJSV.
|
|
*
|
|
*
|
|
* | * * * [x] [x] [x]|
|
|
* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
|
|
* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
|
|
* |[x] [x] [x] * * * |
|
|
* |[x] [x] [x] * * * |
|
|
* |[x] [x] [x] * * * |
|
|
*
|
|
*
|
|
DO 1993 i = 1, NSWEEP
|
|
*
|
|
* .. go go go ...
|
|
*
|
|
MXAAPQ = ZERO
|
|
MXSINJ = ZERO
|
|
ISWROT = 0
|
|
*
|
|
NOTROT = 0
|
|
PSKIPPED = 0
|
|
*
|
|
* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
|
|
* 1 <= p < q <= N. This is the first step toward a blocked implementation
|
|
* of the rotations. New implementation, based on block transformations,
|
|
* is under development.
|
|
*
|
|
DO 2000 ibr = 1, NBLR
|
|
*
|
|
igl = ( ibr-1 )*KBL + 1
|
|
*
|
|
|
|
*
|
|
* ... go to the off diagonal blocks
|
|
*
|
|
igl = ( ibr-1 )*KBL + 1
|
|
*
|
|
* DO 2010 jbc = ibr + 1, NBL
|
|
DO 2010 jbc = 1, NBLC
|
|
*
|
|
jgl = ( jbc-1 )*KBL + N1 + 1
|
|
*
|
|
* doing the block at ( ibr, jbc )
|
|
*
|
|
IJBLSK = 0
|
|
DO 2100 p = igl, MIN( igl+KBL-1, N1 )
|
|
*
|
|
AAPP = SVA( p )
|
|
IF( AAPP.GT.ZERO ) THEN
|
|
*
|
|
PSKIPPED = 0
|
|
*
|
|
DO 2200 q = jgl, MIN( jgl+KBL-1, N )
|
|
*
|
|
AAQQ = SVA( q )
|
|
IF( AAQQ.GT.ZERO ) THEN
|
|
AAPP0 = AAPP
|
|
*
|
|
* .. M x 2 Jacobi SVD ..
|
|
*
|
|
* Safe Gram matrix computation
|
|
*
|
|
IF( AAQQ.GE.ONE ) THEN
|
|
IF( AAPP.GE.AAQQ ) THEN
|
|
ROTOK = ( SMALL*AAPP ).LE.AAQQ
|
|
ELSE
|
|
ROTOK = ( SMALL*AAQQ ).LE.AAPP
|
|
END IF
|
|
IF( AAPP.LT.( BIG / AAQQ ) ) THEN
|
|
AAPQ = ( ZDOTC( M, A( 1, p ), 1,
|
|
$ A( 1, q ), 1 ) / AAQQ ) / AAPP
|
|
ELSE
|
|
CALL ZCOPY( M, A( 1, p ), 1,
|
|
$ WORK, 1 )
|
|
CALL ZLASCL( 'G', 0, 0, AAPP,
|
|
$ ONE, M, 1,
|
|
$ WORK, LDA, IERR )
|
|
AAPQ = ZDOTC( M, WORK, 1,
|
|
$ A( 1, q ), 1 ) / AAQQ
|
|
END IF
|
|
ELSE
|
|
IF( AAPP.GE.AAQQ ) THEN
|
|
ROTOK = AAPP.LE.( AAQQ / SMALL )
|
|
ELSE
|
|
ROTOK = AAQQ.LE.( AAPP / SMALL )
|
|
END IF
|
|
IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
|
|
AAPQ = ( ZDOTC( M, A( 1, p ), 1,
|
|
$ A( 1, q ), 1 ) / MAX(AAQQ,AAPP) )
|
|
$ / MIN(AAQQ,AAPP)
|
|
ELSE
|
|
CALL ZCOPY( M, A( 1, q ), 1,
|
|
$ WORK, 1 )
|
|
CALL ZLASCL( 'G', 0, 0, AAQQ,
|
|
$ ONE, M, 1,
|
|
$ WORK, LDA, IERR )
|
|
AAPQ = ZDOTC( M, A( 1, p ), 1,
|
|
$ WORK, 1 ) / AAPP
|
|
END IF
|
|
END IF
|
|
*
|
|
* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
|
|
AAPQ1 = -ABS(AAPQ)
|
|
MXAAPQ = MAX( MXAAPQ, -AAPQ1 )
|
|
*
|
|
* TO rotate or NOT to rotate, THAT is the question ...
|
|
*
|
|
IF( ABS( AAPQ1 ).GT.TOL ) THEN
|
|
OMPQ = AAPQ / ABS(AAPQ)
|
|
NOTROT = 0
|
|
*[RTD] ROTATED = ROTATED + 1
|
|
PSKIPPED = 0
|
|
ISWROT = ISWROT + 1
|
|
*
|
|
IF( ROTOK ) THEN
|
|
*
|
|
AQOAP = AAQQ / AAPP
|
|
APOAQ = AAPP / AAQQ
|
|
THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
|
|
IF( AAQQ.GT.AAPP0 )THETA = -THETA
|
|
*
|
|
IF( ABS( THETA ).GT.BIGTHETA ) THEN
|
|
T = HALF / THETA
|
|
CS = ONE
|
|
CALL ZROT( M, A(1,p), 1, A(1,q), 1,
|
|
$ CS, CONJG(OMPQ)*T )
|
|
IF( RSVEC ) THEN
|
|
CALL ZROT( MVL, V(1,p), 1,
|
|
$ V(1,q), 1, CS, CONJG(OMPQ)*T )
|
|
END IF
|
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
|
$ ONE+T*APOAQ*AAPQ1 ) )
|
|
AAPP = AAPP*SQRT( MAX( ZERO,
|
|
$ ONE-T*AQOAP*AAPQ1 ) )
|
|
MXSINJ = MAX( MXSINJ, ABS( T ) )
|
|
ELSE
|
|
*
|
|
* .. choose correct signum for THETA and rotate
|
|
*
|
|
THSIGN = -SIGN( ONE, AAPQ1 )
|
|
IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
|
|
T = ONE / ( THETA+THSIGN*
|
|
$ SQRT( ONE+THETA*THETA ) )
|
|
CS = SQRT( ONE / ( ONE+T*T ) )
|
|
SN = T*CS
|
|
MXSINJ = MAX( MXSINJ, ABS( SN ) )
|
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
|
$ ONE+T*APOAQ*AAPQ1 ) )
|
|
AAPP = AAPP*SQRT( MAX( ZERO,
|
|
$ ONE-T*AQOAP*AAPQ1 ) )
|
|
*
|
|
CALL ZROT( M, A(1,p), 1, A(1,q), 1,
|
|
$ CS, CONJG(OMPQ)*SN )
|
|
IF( RSVEC ) THEN
|
|
CALL ZROT( MVL, V(1,p), 1,
|
|
$ V(1,q), 1, CS, CONJG(OMPQ)*SN )
|
|
END IF
|
|
END IF
|
|
D(p) = -D(q) * OMPQ
|
|
*
|
|
ELSE
|
|
* .. have to use modified Gram-Schmidt like transformation
|
|
IF( AAPP.GT.AAQQ ) THEN
|
|
CALL ZCOPY( M, A( 1, p ), 1,
|
|
$ WORK, 1 )
|
|
CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
|
|
$ M, 1, WORK,LDA,
|
|
$ IERR )
|
|
CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
|
|
$ M, 1, A( 1, q ), LDA,
|
|
$ IERR )
|
|
CALL ZAXPY( M, -AAPQ, WORK,
|
|
$ 1, A( 1, q ), 1 )
|
|
CALL ZLASCL( 'G', 0, 0, ONE, AAQQ,
|
|
$ M, 1, A( 1, q ), LDA,
|
|
$ IERR )
|
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
|
$ ONE-AAPQ1*AAPQ1 ) )
|
|
MXSINJ = MAX( MXSINJ, SFMIN )
|
|
ELSE
|
|
CALL ZCOPY( M, A( 1, q ), 1,
|
|
$ WORK, 1 )
|
|
CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
|
|
$ M, 1, WORK,LDA,
|
|
$ IERR )
|
|
CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
|
|
$ M, 1, A( 1, p ), LDA,
|
|
$ IERR )
|
|
CALL ZAXPY( M, -CONJG(AAPQ),
|
|
$ WORK, 1, A( 1, p ), 1 )
|
|
CALL ZLASCL( 'G', 0, 0, ONE, AAPP,
|
|
$ M, 1, A( 1, p ), LDA,
|
|
$ IERR )
|
|
SVA( p ) = AAPP*SQRT( MAX( ZERO,
|
|
$ ONE-AAPQ1*AAPQ1 ) )
|
|
MXSINJ = MAX( MXSINJ, SFMIN )
|
|
END IF
|
|
END IF
|
|
* END IF ROTOK THEN ... ELSE
|
|
*
|
|
* In the case of cancellation in updating SVA(q), SVA(p)
|
|
* .. recompute SVA(q), SVA(p)
|
|
IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
|
|
$ THEN
|
|
IF( ( AAQQ.LT.ROOTBIG ) .AND.
|
|
$ ( AAQQ.GT.ROOTSFMIN ) ) THEN
|
|
SVA( q ) = DZNRM2( M, A( 1, q ), 1)
|
|
ELSE
|
|
T = ZERO
|
|
AAQQ = ONE
|
|
CALL ZLASSQ( M, A( 1, q ), 1, T,
|
|
$ AAQQ )
|
|
SVA( q ) = T*SQRT( AAQQ )
|
|
END IF
|
|
END IF
|
|
IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
|
|
IF( ( AAPP.LT.ROOTBIG ) .AND.
|
|
$ ( AAPP.GT.ROOTSFMIN ) ) THEN
|
|
AAPP = DZNRM2( M, A( 1, p ), 1 )
|
|
ELSE
|
|
T = ZERO
|
|
AAPP = ONE
|
|
CALL ZLASSQ( M, A( 1, p ), 1, T,
|
|
$ AAPP )
|
|
AAPP = T*SQRT( AAPP )
|
|
END IF
|
|
SVA( p ) = AAPP
|
|
END IF
|
|
* end of OK rotation
|
|
ELSE
|
|
NOTROT = NOTROT + 1
|
|
*[RTD] SKIPPED = SKIPPED + 1
|
|
PSKIPPED = PSKIPPED + 1
|
|
IJBLSK = IJBLSK + 1
|
|
END IF
|
|
ELSE
|
|
NOTROT = NOTROT + 1
|
|
PSKIPPED = PSKIPPED + 1
|
|
IJBLSK = IJBLSK + 1
|
|
END IF
|
|
*
|
|
IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
|
|
$ THEN
|
|
SVA( p ) = AAPP
|
|
NOTROT = 0
|
|
GO TO 2011
|
|
END IF
|
|
IF( ( i.LE.SWBAND ) .AND.
|
|
$ ( PSKIPPED.GT.ROWSKIP ) ) THEN
|
|
AAPP = -AAPP
|
|
NOTROT = 0
|
|
GO TO 2203
|
|
END IF
|
|
*
|
|
2200 CONTINUE
|
|
* end of the q-loop
|
|
2203 CONTINUE
|
|
*
|
|
SVA( p ) = AAPP
|
|
*
|
|
ELSE
|
|
*
|
|
IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
|
|
$ MIN( jgl+KBL-1, N ) - jgl + 1
|
|
IF( AAPP.LT.ZERO )NOTROT = 0
|
|
*
|
|
END IF
|
|
*
|
|
2100 CONTINUE
|
|
* end of the p-loop
|
|
2010 CONTINUE
|
|
* end of the jbc-loop
|
|
2011 CONTINUE
|
|
*2011 bailed out of the jbc-loop
|
|
DO 2012 p = igl, MIN( igl+KBL-1, N )
|
|
SVA( p ) = ABS( SVA( p ) )
|
|
2012 CONTINUE
|
|
***
|
|
2000 CONTINUE
|
|
*2000 :: end of the ibr-loop
|
|
*
|
|
* .. update SVA(N)
|
|
IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
|
|
$ THEN
|
|
SVA( N ) = DZNRM2( M, A( 1, N ), 1 )
|
|
ELSE
|
|
T = ZERO
|
|
AAPP = ONE
|
|
CALL ZLASSQ( M, A( 1, N ), 1, T, AAPP )
|
|
SVA( N ) = T*SQRT( AAPP )
|
|
END IF
|
|
*
|
|
* Additional steering devices
|
|
*
|
|
IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
|
|
$ ( ISWROT.LE.N ) ) )SWBAND = i
|
|
*
|
|
IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( DBLE( N ) )*
|
|
$ TOL ) .AND. ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
|
|
GO TO 1994
|
|
END IF
|
|
*
|
|
IF( NOTROT.GE.EMPTSW )GO TO 1994
|
|
*
|
|
1993 CONTINUE
|
|
* end i=1:NSWEEP loop
|
|
*
|
|
* #:( Reaching this point means that the procedure has not converged.
|
|
INFO = NSWEEP - 1
|
|
GO TO 1995
|
|
*
|
|
1994 CONTINUE
|
|
* #:) Reaching this point means numerical convergence after the i-th
|
|
* sweep.
|
|
*
|
|
INFO = 0
|
|
* #:) INFO = 0 confirms successful iterations.
|
|
1995 CONTINUE
|
|
*
|
|
* Sort the vector SVA() of column norms.
|
|
DO 5991 p = 1, N - 1
|
|
q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1
|
|
IF( p.NE.q ) THEN
|
|
TEMP1 = SVA( p )
|
|
SVA( p ) = SVA( q )
|
|
SVA( q ) = TEMP1
|
|
AAPQ = D( p )
|
|
D( p ) = D( q )
|
|
D( q ) = AAPQ
|
|
CALL ZSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
|
|
IF( RSVEC )CALL ZSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
|
|
END IF
|
|
5991 CONTINUE
|
|
*
|
|
*
|
|
RETURN
|
|
* ..
|
|
* .. END OF ZGSVJ1
|
|
* ..
|
|
END
|
|
|