You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
340 lines
9.7 KiB
340 lines
9.7 KiB
*> \brief \b ZHEEQUB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZHEEQUB + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheequb.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheequb.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheequb.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, N
|
|
* DOUBLE PRECISION AMAX, SCOND
|
|
* CHARACTER UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), WORK( * )
|
|
* DOUBLE PRECISION S( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZHEEQUB computes row and column scalings intended to equilibrate a
|
|
*> Hermitian matrix A (with respect to the Euclidean norm) and reduce
|
|
*> its condition number. The scale factors S are computed by the BIN
|
|
*> algorithm (see references) so that the scaled matrix B with elements
|
|
*> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
|
|
*> the smallest possible condition number over all possible diagonal
|
|
*> scalings.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> The N-by-N Hermitian matrix whose scaling factors are to be
|
|
*> computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is DOUBLE PRECISION array, dimension (N)
|
|
*> If INFO = 0, S contains the scale factors for A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCOND
|
|
*> \verbatim
|
|
*> SCOND is DOUBLE PRECISION
|
|
*> If INFO = 0, S contains the ratio of the smallest S(i) to
|
|
*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
|
|
*> large nor too small, it is not worth scaling by S.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AMAX
|
|
*> \verbatim
|
|
*> AMAX is DOUBLE PRECISION
|
|
*> Largest absolute value of any matrix element. If AMAX is
|
|
*> very close to overflow or very close to underflow, the
|
|
*> matrix should be scaled.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, the i-th diagonal element is nonpositive.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16HEcomputational
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
|
|
*> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
|
|
*> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
|
|
*> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, N
|
|
DOUBLE PRECISION AMAX, SCOND
|
|
CHARACTER UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), WORK( * )
|
|
DOUBLE PRECISION S( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
|
|
INTEGER MAX_ITER
|
|
PARAMETER ( MAX_ITER = 100 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, ITER
|
|
DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
|
|
$ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
|
|
LOGICAL UP
|
|
COMPLEX*16 ZDUM
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH
|
|
LOGICAL LSAME
|
|
EXTERNAL DLAMCH, LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZLASSQ, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, DIMAG, INT, LOG, MAX, MIN, SQRT
|
|
* ..
|
|
* .. Statement Functions ..
|
|
DOUBLE PRECISION CABS1
|
|
* ..
|
|
* .. Statement Function Definitions ..
|
|
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF ( N .LT. 0 ) THEN
|
|
INFO = -2
|
|
ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF ( INFO .NE. 0 ) THEN
|
|
CALL XERBLA( 'ZHEEQUB', -INFO )
|
|
RETURN
|
|
END IF
|
|
|
|
UP = LSAME( UPLO, 'U' )
|
|
AMAX = ZERO
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF ( N .EQ. 0 ) THEN
|
|
SCOND = ONE
|
|
RETURN
|
|
END IF
|
|
|
|
DO I = 1, N
|
|
S( I ) = ZERO
|
|
END DO
|
|
|
|
AMAX = ZERO
|
|
IF ( UP ) THEN
|
|
DO J = 1, N
|
|
DO I = 1, J-1
|
|
S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
|
|
S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
|
|
AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
|
|
END DO
|
|
S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
|
|
AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
|
|
END DO
|
|
ELSE
|
|
DO J = 1, N
|
|
S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
|
|
AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
|
|
DO I = J+1, N
|
|
S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
|
|
S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
|
|
AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
|
|
END DO
|
|
END DO
|
|
END IF
|
|
DO J = 1, N
|
|
S( J ) = 1.0D0 / S( J )
|
|
END DO
|
|
|
|
TOL = ONE / SQRT( 2.0D0 * N )
|
|
|
|
DO ITER = 1, MAX_ITER
|
|
SCALE = 0.0D0
|
|
SUMSQ = 0.0D0
|
|
* beta = |A|s
|
|
DO I = 1, N
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
IF ( UP ) THEN
|
|
DO J = 1, N
|
|
DO I = 1, J-1
|
|
WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
|
|
WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
|
|
END DO
|
|
WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
|
|
END DO
|
|
ELSE
|
|
DO J = 1, N
|
|
WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
|
|
DO I = J+1, N
|
|
WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
|
|
WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
|
|
END DO
|
|
END DO
|
|
END IF
|
|
|
|
* avg = s^T beta / n
|
|
AVG = 0.0D0
|
|
DO I = 1, N
|
|
AVG = AVG + DBLE( S( I )*WORK( I ) )
|
|
END DO
|
|
AVG = AVG / N
|
|
|
|
STD = 0.0D0
|
|
DO I = N+1, 2*N
|
|
WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
|
|
END DO
|
|
CALL ZLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
|
|
STD = SCALE * SQRT( SUMSQ / N )
|
|
|
|
IF ( STD .LT. TOL * AVG ) GOTO 999
|
|
|
|
DO I = 1, N
|
|
T = CABS1( A( I, I ) )
|
|
SI = S( I )
|
|
C2 = ( N-1 ) * T
|
|
C1 = ( N-2 ) * ( DBLE( WORK( I ) ) - T*SI )
|
|
C0 = -(T*SI)*SI + 2 * DBLE( WORK( I ) ) * SI - N*AVG
|
|
D = C1*C1 - 4*C0*C2
|
|
|
|
IF ( D .LE. 0 ) THEN
|
|
INFO = -1
|
|
RETURN
|
|
END IF
|
|
SI = -2*C0 / ( C1 + SQRT( D ) )
|
|
|
|
D = SI - S( I )
|
|
U = ZERO
|
|
IF ( UP ) THEN
|
|
DO J = 1, I
|
|
T = CABS1( A( J, I ) )
|
|
U = U + S( J )*T
|
|
WORK( J ) = WORK( J ) + D*T
|
|
END DO
|
|
DO J = I+1,N
|
|
T = CABS1( A( I, J ) )
|
|
U = U + S( J )*T
|
|
WORK( J ) = WORK( J ) + D*T
|
|
END DO
|
|
ELSE
|
|
DO J = 1, I
|
|
T = CABS1( A( I, J ) )
|
|
U = U + S( J )*T
|
|
WORK( J ) = WORK( J ) + D*T
|
|
END DO
|
|
DO J = I+1,N
|
|
T = CABS1( A( J, I ) )
|
|
U = U + S( J )*T
|
|
WORK( J ) = WORK( J ) + D*T
|
|
END DO
|
|
END IF
|
|
|
|
AVG = AVG + ( U + DBLE( WORK( I ) ) ) * D / N
|
|
S( I ) = SI
|
|
END DO
|
|
END DO
|
|
|
|
999 CONTINUE
|
|
|
|
SMLNUM = DLAMCH( 'SAFEMIN' )
|
|
BIGNUM = ONE / SMLNUM
|
|
SMIN = BIGNUM
|
|
SMAX = ZERO
|
|
T = ONE / SQRT( AVG )
|
|
BASE = DLAMCH( 'B' )
|
|
U = ONE / LOG( BASE )
|
|
DO I = 1, N
|
|
S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
|
|
SMIN = MIN( SMIN, S( I ) )
|
|
SMAX = MAX( SMAX, S( I ) )
|
|
END DO
|
|
SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
|
|
*
|
|
END
|
|
|