You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
587 lines
16 KiB
587 lines
16 KiB
*> \brief \b ZHETRI2X
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZHETRI2X + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetri2x.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetri2x.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetri2x.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, LDA, N, NB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* COMPLEX*16 A( LDA, * ), WORK( N+NB+1,* )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZHETRI2X computes the inverse of a COMPLEX*16 Hermitian indefinite matrix
|
|
*> A using the factorization A = U*D*U**H or A = L*D*L**H computed by
|
|
*> ZHETRF.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the details of the factorization are stored
|
|
*> as an upper or lower triangular matrix.
|
|
*> = 'U': Upper triangular, form is A = U*D*U**H;
|
|
*> = 'L': Lower triangular, form is A = L*D*L**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the NNB diagonal matrix D and the multipliers
|
|
*> used to obtain the factor U or L as computed by ZHETRF.
|
|
*>
|
|
*> On exit, if INFO = 0, the (symmetric) inverse of the original
|
|
*> matrix. If UPLO = 'U', the upper triangular part of the
|
|
*> inverse is formed and the part of A below the diagonal is not
|
|
*> referenced; if UPLO = 'L' the lower triangular part of the
|
|
*> inverse is formed and the part of A above the diagonal is
|
|
*> not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> Details of the interchanges and the NNB structure of D
|
|
*> as determined by ZHETRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (N+NB+1,NB+3)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NB
|
|
*> \verbatim
|
|
*> NB is INTEGER
|
|
*> Block size
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
|
|
*> inverse could not be computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16HEcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, LDA, N, NB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
COMPLEX*16 A( LDA, * ), WORK( N+NB+1,* )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
COMPLEX*16 CONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0,
|
|
$ CONE = ( 1.0D+0, 0.0D+0 ),
|
|
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER I, IINFO, IP, K, CUT, NNB
|
|
INTEGER COUNT
|
|
INTEGER J, U11, INVD
|
|
|
|
COMPLEX*16 AK, AKKP1, AKP1, D, T
|
|
COMPLEX*16 U01_I_J, U01_IP1_J
|
|
COMPLEX*16 U11_I_J, U11_IP1_J
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZSYCONV, XERBLA, ZTRTRI
|
|
EXTERNAL ZGEMM, ZTRMM, ZHESWAPR
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZHETRI2X', -INFO )
|
|
RETURN
|
|
END IF
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Convert A
|
|
* Workspace got Non-diag elements of D
|
|
*
|
|
CALL ZSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
|
|
*
|
|
* Check that the diagonal matrix D is nonsingular.
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Upper triangular storage: examine D from bottom to top
|
|
*
|
|
DO INFO = N, 1, -1
|
|
IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
|
|
$ RETURN
|
|
END DO
|
|
ELSE
|
|
*
|
|
* Lower triangular storage: examine D from top to bottom.
|
|
*
|
|
DO INFO = 1, N
|
|
IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
|
|
$ RETURN
|
|
END DO
|
|
END IF
|
|
INFO = 0
|
|
*
|
|
* Splitting Workspace
|
|
* U01 is a block (N,NB+1)
|
|
* The first element of U01 is in WORK(1,1)
|
|
* U11 is a block (NB+1,NB+1)
|
|
* The first element of U11 is in WORK(N+1,1)
|
|
U11 = N
|
|
* INVD is a block (N,2)
|
|
* The first element of INVD is in WORK(1,INVD)
|
|
INVD = NB+2
|
|
|
|
IF( UPPER ) THEN
|
|
*
|
|
* invA = P * inv(U**H)*inv(D)*inv(U)*P**H.
|
|
*
|
|
CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
|
|
*
|
|
* inv(D) and inv(D)*inv(U)
|
|
*
|
|
K=1
|
|
DO WHILE ( K .LE. N )
|
|
IF( IPIV( K ).GT.0 ) THEN
|
|
* 1 x 1 diagonal NNB
|
|
WORK(K,INVD) = ONE / REAL ( A( K, K ) )
|
|
WORK(K,INVD+1) = 0
|
|
K=K+1
|
|
ELSE
|
|
* 2 x 2 diagonal NNB
|
|
T = ABS ( WORK(K+1,1) )
|
|
AK = DBLE ( A( K, K ) ) / T
|
|
AKP1 = DBLE ( A( K+1, K+1 ) ) / T
|
|
AKKP1 = WORK(K+1,1) / T
|
|
D = T*( AK*AKP1-ONE )
|
|
WORK(K,INVD) = AKP1 / D
|
|
WORK(K+1,INVD+1) = AK / D
|
|
WORK(K,INVD+1) = -AKKP1 / D
|
|
WORK(K+1,INVD) = DCONJG (WORK(K,INVD+1) )
|
|
K=K+2
|
|
END IF
|
|
END DO
|
|
*
|
|
* inv(U**H) = (inv(U))**H
|
|
*
|
|
* inv(U**H)*inv(D)*inv(U)
|
|
*
|
|
CUT=N
|
|
DO WHILE (CUT .GT. 0)
|
|
NNB=NB
|
|
IF (CUT .LE. NNB) THEN
|
|
NNB=CUT
|
|
ELSE
|
|
COUNT = 0
|
|
* count negative elements,
|
|
DO I=CUT+1-NNB,CUT
|
|
IF (IPIV(I) .LT. 0) COUNT=COUNT+1
|
|
END DO
|
|
* need a even number for a clear cut
|
|
IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
|
|
END IF
|
|
|
|
CUT=CUT-NNB
|
|
*
|
|
* U01 Block
|
|
*
|
|
DO I=1,CUT
|
|
DO J=1,NNB
|
|
WORK(I,J)=A(I,CUT+J)
|
|
END DO
|
|
END DO
|
|
*
|
|
* U11 Block
|
|
*
|
|
DO I=1,NNB
|
|
WORK(U11+I,I)=CONE
|
|
DO J=1,I-1
|
|
WORK(U11+I,J)=ZERO
|
|
END DO
|
|
DO J=I+1,NNB
|
|
WORK(U11+I,J)=A(CUT+I,CUT+J)
|
|
END DO
|
|
END DO
|
|
*
|
|
* invD*U01
|
|
*
|
|
I=1
|
|
DO WHILE (I .LE. CUT)
|
|
IF (IPIV(I) > 0) THEN
|
|
DO J=1,NNB
|
|
WORK(I,J)=WORK(I,INVD)*WORK(I,J)
|
|
END DO
|
|
I=I+1
|
|
ELSE
|
|
DO J=1,NNB
|
|
U01_I_J = WORK(I,J)
|
|
U01_IP1_J = WORK(I+1,J)
|
|
WORK(I,J)=WORK(I,INVD)*U01_I_J+
|
|
$ WORK(I,INVD+1)*U01_IP1_J
|
|
WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+
|
|
$ WORK(I+1,INVD+1)*U01_IP1_J
|
|
END DO
|
|
I=I+2
|
|
END IF
|
|
END DO
|
|
*
|
|
* invD1*U11
|
|
*
|
|
I=1
|
|
DO WHILE (I .LE. NNB)
|
|
IF (IPIV(CUT+I) > 0) THEN
|
|
DO J=I,NNB
|
|
WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
|
|
END DO
|
|
I=I+1
|
|
ELSE
|
|
DO J=I,NNB
|
|
U11_I_J = WORK(U11+I,J)
|
|
U11_IP1_J = WORK(U11+I+1,J)
|
|
WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
|
|
$ WORK(CUT+I,INVD+1)*WORK(U11+I+1,J)
|
|
WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+
|
|
$ WORK(CUT+I+1,INVD+1)*U11_IP1_J
|
|
END DO
|
|
I=I+2
|
|
END IF
|
|
END DO
|
|
*
|
|
* U11**H*invD1*U11->U11
|
|
*
|
|
CALL ZTRMM('L','U','C','U',NNB, NNB,
|
|
$ CONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
|
|
*
|
|
DO I=1,NNB
|
|
DO J=I,NNB
|
|
A(CUT+I,CUT+J)=WORK(U11+I,J)
|
|
END DO
|
|
END DO
|
|
*
|
|
* U01**H*invD*U01->A(CUT+I,CUT+J)
|
|
*
|
|
CALL ZGEMM('C','N',NNB,NNB,CUT,CONE,A(1,CUT+1),LDA,
|
|
$ WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
|
|
*
|
|
* U11 = U11**H*invD1*U11 + U01**H*invD*U01
|
|
*
|
|
DO I=1,NNB
|
|
DO J=I,NNB
|
|
A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
|
|
END DO
|
|
END DO
|
|
*
|
|
* U01 = U00**H*invD0*U01
|
|
*
|
|
CALL ZTRMM('L',UPLO,'C','U',CUT, NNB,
|
|
$ CONE,A,LDA,WORK,N+NB+1)
|
|
|
|
*
|
|
* Update U01
|
|
*
|
|
DO I=1,CUT
|
|
DO J=1,NNB
|
|
A(I,CUT+J)=WORK(I,J)
|
|
END DO
|
|
END DO
|
|
*
|
|
* Next Block
|
|
*
|
|
END DO
|
|
*
|
|
* Apply PERMUTATIONS P and P**H: P * inv(U**H)*inv(D)*inv(U) *P**H
|
|
*
|
|
I=1
|
|
DO WHILE ( I .LE. N )
|
|
IF( IPIV(I) .GT. 0 ) THEN
|
|
IP=IPIV(I)
|
|
IF (I .LT. IP) CALL ZHESWAPR( UPLO, N, A, LDA, I ,IP )
|
|
IF (I .GT. IP) CALL ZHESWAPR( UPLO, N, A, LDA, IP ,I )
|
|
ELSE
|
|
IP=-IPIV(I)
|
|
I=I+1
|
|
IF ( (I-1) .LT. IP)
|
|
$ CALL ZHESWAPR( UPLO, N, A, LDA, I-1 ,IP )
|
|
IF ( (I-1) .GT. IP)
|
|
$ CALL ZHESWAPR( UPLO, N, A, LDA, IP ,I-1 )
|
|
ENDIF
|
|
I=I+1
|
|
END DO
|
|
ELSE
|
|
*
|
|
* LOWER...
|
|
*
|
|
* invA = P * inv(U**H)*inv(D)*inv(U)*P**H.
|
|
*
|
|
CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
|
|
*
|
|
* inv(D) and inv(D)*inv(U)
|
|
*
|
|
K=N
|
|
DO WHILE ( K .GE. 1 )
|
|
IF( IPIV( K ).GT.0 ) THEN
|
|
* 1 x 1 diagonal NNB
|
|
WORK(K,INVD) = ONE / REAL ( A( K, K ) )
|
|
WORK(K,INVD+1) = 0
|
|
K=K-1
|
|
ELSE
|
|
* 2 x 2 diagonal NNB
|
|
T = ABS ( WORK(K-1,1) )
|
|
AK = DBLE ( A( K-1, K-1 ) ) / T
|
|
AKP1 = DBLE ( A( K, K ) ) / T
|
|
AKKP1 = WORK(K-1,1) / T
|
|
D = T*( AK*AKP1-ONE )
|
|
WORK(K-1,INVD) = AKP1 / D
|
|
WORK(K,INVD) = AK / D
|
|
WORK(K,INVD+1) = -AKKP1 / D
|
|
WORK(K-1,INVD+1) = DCONJG (WORK(K,INVD+1) )
|
|
K=K-2
|
|
END IF
|
|
END DO
|
|
*
|
|
* inv(U**H) = (inv(U))**H
|
|
*
|
|
* inv(U**H)*inv(D)*inv(U)
|
|
*
|
|
CUT=0
|
|
DO WHILE (CUT .LT. N)
|
|
NNB=NB
|
|
IF (CUT + NNB .GE. N) THEN
|
|
NNB=N-CUT
|
|
ELSE
|
|
COUNT = 0
|
|
* count negative elements,
|
|
DO I=CUT+1,CUT+NNB
|
|
IF (IPIV(I) .LT. 0) COUNT=COUNT+1
|
|
END DO
|
|
* need a even number for a clear cut
|
|
IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
|
|
END IF
|
|
* L21 Block
|
|
DO I=1,N-CUT-NNB
|
|
DO J=1,NNB
|
|
WORK(I,J)=A(CUT+NNB+I,CUT+J)
|
|
END DO
|
|
END DO
|
|
* L11 Block
|
|
DO I=1,NNB
|
|
WORK(U11+I,I)=CONE
|
|
DO J=I+1,NNB
|
|
WORK(U11+I,J)=ZERO
|
|
END DO
|
|
DO J=1,I-1
|
|
WORK(U11+I,J)=A(CUT+I,CUT+J)
|
|
END DO
|
|
END DO
|
|
*
|
|
* invD*L21
|
|
*
|
|
I=N-CUT-NNB
|
|
DO WHILE (I .GE. 1)
|
|
IF (IPIV(CUT+NNB+I) > 0) THEN
|
|
DO J=1,NNB
|
|
WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J)
|
|
END DO
|
|
I=I-1
|
|
ELSE
|
|
DO J=1,NNB
|
|
U01_I_J = WORK(I,J)
|
|
U01_IP1_J = WORK(I-1,J)
|
|
WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
|
|
$ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
|
|
WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
|
|
$ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
|
|
END DO
|
|
I=I-2
|
|
END IF
|
|
END DO
|
|
*
|
|
* invD1*L11
|
|
*
|
|
I=NNB
|
|
DO WHILE (I .GE. 1)
|
|
IF (IPIV(CUT+I) > 0) THEN
|
|
DO J=1,NNB
|
|
WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
|
|
END DO
|
|
I=I-1
|
|
ELSE
|
|
DO J=1,NNB
|
|
U11_I_J = WORK(U11+I,J)
|
|
U11_IP1_J = WORK(U11+I-1,J)
|
|
WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
|
|
$ WORK(CUT+I,INVD+1)*U11_IP1_J
|
|
WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+
|
|
$ WORK(CUT+I-1,INVD)*U11_IP1_J
|
|
END DO
|
|
I=I-2
|
|
END IF
|
|
END DO
|
|
*
|
|
* L11**H*invD1*L11->L11
|
|
*
|
|
CALL ZTRMM('L',UPLO,'C','U',NNB, NNB,
|
|
$ CONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
|
|
*
|
|
DO I=1,NNB
|
|
DO J=1,I
|
|
A(CUT+I,CUT+J)=WORK(U11+I,J)
|
|
END DO
|
|
END DO
|
|
*
|
|
IF ( (CUT+NNB) .LT. N ) THEN
|
|
*
|
|
* L21**H*invD2*L21->A(CUT+I,CUT+J)
|
|
*
|
|
CALL ZGEMM('C','N',NNB,NNB,N-NNB-CUT,CONE,A(CUT+NNB+1,CUT+1)
|
|
$ ,LDA,WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
|
|
|
|
*
|
|
* L11 = L11**H*invD1*L11 + U01**H*invD*U01
|
|
*
|
|
DO I=1,NNB
|
|
DO J=1,I
|
|
A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
|
|
END DO
|
|
END DO
|
|
*
|
|
* L01 = L22**H*invD2*L21
|
|
*
|
|
CALL ZTRMM('L',UPLO,'C','U', N-NNB-CUT, NNB,
|
|
$ CONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1)
|
|
|
|
* Update L21
|
|
DO I=1,N-CUT-NNB
|
|
DO J=1,NNB
|
|
A(CUT+NNB+I,CUT+J)=WORK(I,J)
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
*
|
|
* L11 = L11**H*invD1*L11
|
|
*
|
|
DO I=1,NNB
|
|
DO J=1,I
|
|
A(CUT+I,CUT+J)=WORK(U11+I,J)
|
|
END DO
|
|
END DO
|
|
END IF
|
|
*
|
|
* Next Block
|
|
*
|
|
CUT=CUT+NNB
|
|
END DO
|
|
*
|
|
* Apply PERMUTATIONS P and P**H: P * inv(U**H)*inv(D)*inv(U) *P**H
|
|
*
|
|
I=N
|
|
DO WHILE ( I .GE. 1 )
|
|
IF( IPIV(I) .GT. 0 ) THEN
|
|
IP=IPIV(I)
|
|
IF (I .LT. IP) CALL ZHESWAPR( UPLO, N, A, LDA, I ,IP )
|
|
IF (I .GT. IP) CALL ZHESWAPR( UPLO, N, A, LDA, IP ,I )
|
|
ELSE
|
|
IP=-IPIV(I)
|
|
IF ( I .LT. IP) CALL ZHESWAPR( UPLO, N, A, LDA, I ,IP )
|
|
IF ( I .GT. IP) CALL ZHESWAPR( UPLO, N, A, LDA, IP ,I )
|
|
I=I-1
|
|
ENDIF
|
|
I=I-1
|
|
END DO
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZHETRI2X
|
|
*
|
|
END
|
|
|
|
|