You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
167 lines
4.9 KiB
167 lines
4.9 KiB
*> \brief \b ZLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZLA_GBRPVGRW + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrpvgrw.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrpvgrw.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrpvgrw.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW( N, KL, KU, NCOLS, AB,
|
|
* LDAB, AFB, LDAFB )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER N, KL, KU, NCOLS, LDAB, LDAFB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLA_GBRPVGRW computes the reciprocal pivot growth factor
|
|
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
|
|
*> much less than 1, the stability of the LU factorization of the
|
|
*> (equilibrated) matrix A could be poor. This also means that the
|
|
*> solution X, estimated condition numbers, and error bounds could be
|
|
*> unreliable.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of linear equations, i.e., the order of the
|
|
*> matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NCOLS
|
|
*> \verbatim
|
|
*> NCOLS is INTEGER
|
|
*> The number of columns of the matrix A. NCOLS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX*16 array, dimension (LDAB,N)
|
|
*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
|
|
*> The j-th column of A is stored in the j-th column of the
|
|
*> array AB as follows:
|
|
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AFB
|
|
*> \verbatim
|
|
*> AFB is COMPLEX*16 array, dimension (LDAFB,N)
|
|
*> Details of the LU factorization of the band matrix A, as
|
|
*> computed by ZGBTRF. U is stored as an upper triangular
|
|
*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
|
|
*> and the multipliers used during the factorization are stored
|
|
*> in rows KL+KU+2 to 2*KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAFB
|
|
*> \verbatim
|
|
*> LDAFB is INTEGER
|
|
*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GBcomputational
|
|
*
|
|
* =====================================================================
|
|
DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW( N, KL, KU, NCOLS, AB,
|
|
$ LDAB, AFB, LDAFB )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER N, KL, KU, NCOLS, LDAB, LDAFB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, KD
|
|
DOUBLE PRECISION AMAX, UMAX, RPVGRW
|
|
COMPLEX*16 ZDUM
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, REAL, DIMAG
|
|
* ..
|
|
* .. Statement Functions ..
|
|
DOUBLE PRECISION CABS1
|
|
* ..
|
|
* .. Statement Function Definitions ..
|
|
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
RPVGRW = 1.0D+0
|
|
|
|
KD = KU + 1
|
|
DO J = 1, NCOLS
|
|
AMAX = 0.0D+0
|
|
UMAX = 0.0D+0
|
|
DO I = MAX( J-KU, 1 ), MIN( J+KL, N )
|
|
AMAX = MAX( CABS1( AB( KD+I-J, J ) ), AMAX )
|
|
END DO
|
|
DO I = MAX( J-KU, 1 ), J
|
|
UMAX = MAX( CABS1( AFB( KD+I-J, J ) ), UMAX )
|
|
END DO
|
|
IF ( UMAX /= 0.0D+0 ) THEN
|
|
RPVGRW = MIN( AMAX / UMAX, RPVGRW )
|
|
END IF
|
|
END DO
|
|
ZLA_GBRPVGRW = RPVGRW
|
|
*
|
|
* End of ZLA_GBRPVGRW
|
|
*
|
|
END
|
|
|