You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							577 lines
						
					
					
						
							18 KiB
						
					
					
				
			
		
		
	
	
							577 lines
						
					
					
						
							18 KiB
						
					
					
				| *> \brief \b ZLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLAHQR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahqr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahqr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahqr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
 | |
| *                          IHIZ, Z, LDZ, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
 | |
| *       LOGICAL            WANTT, WANTZ
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         H( LDH, * ), W( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    ZLAHQR is an auxiliary routine called by CHSEQR to update the
 | |
| *>    eigenvalues and Schur decomposition already computed by CHSEQR, by
 | |
| *>    dealing with the Hessenberg submatrix in rows and columns ILO to
 | |
| *>    IHI.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] WANTT
 | |
| *> \verbatim
 | |
| *>          WANTT is LOGICAL
 | |
| *>          = .TRUE. : the full Schur form T is required;
 | |
| *>          = .FALSE.: only eigenvalues are required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is LOGICAL
 | |
| *>          = .TRUE. : the matrix of Schur vectors Z is required;
 | |
| *>          = .FALSE.: Schur vectors are not required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix H.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>          It is assumed that H is already upper triangular in rows and
 | |
| *>          columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
 | |
| *>          ZLAHQR works primarily with the Hessenberg submatrix in rows
 | |
| *>          and columns ILO to IHI, but applies transformations to all of
 | |
| *>          H if WANTT is .TRUE..
 | |
| *>          1 <= ILO <= max(1,IHI); IHI <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] H
 | |
| *> \verbatim
 | |
| *>          H is COMPLEX*16 array, dimension (LDH,N)
 | |
| *>          On entry, the upper Hessenberg matrix H.
 | |
| *>          On exit, if INFO is zero and if WANTT is .TRUE., then H
 | |
| *>          is upper triangular in rows and columns ILO:IHI.  If INFO
 | |
| *>          is zero and if WANTT is .FALSE., then the contents of H
 | |
| *>          are unspecified on exit.  The output state of H in case
 | |
| *>          INF is positive is below under the description of INFO.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is INTEGER
 | |
| *>          The leading dimension of the array H. LDH >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is COMPLEX*16 array, dimension (N)
 | |
| *>          The computed eigenvalues ILO to IHI are stored in the
 | |
| *>          corresponding elements of W. If WANTT is .TRUE., the
 | |
| *>          eigenvalues are stored in the same order as on the diagonal
 | |
| *>          of the Schur form returned in H, with W(i) = H(i,i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILOZ
 | |
| *> \verbatim
 | |
| *>          ILOZ is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHIZ
 | |
| *> \verbatim
 | |
| *>          IHIZ is INTEGER
 | |
| *>          Specify the rows of Z to which transformations must be
 | |
| *>          applied if WANTZ is .TRUE..
 | |
| *>          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX*16 array, dimension (LDZ,N)
 | |
| *>          If WANTZ is .TRUE., on entry Z must contain the current
 | |
| *>          matrix Z of transformations accumulated by CHSEQR, and on
 | |
| *>          exit Z has been updated; transformations are applied only to
 | |
| *>          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
 | |
| *>          If WANTZ is .FALSE., Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z. LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>           = 0:   successful exit
 | |
| *>           > 0:   if INFO = i, ZLAHQR failed to compute all the
 | |
| *>                  eigenvalues ILO to IHI in a total of 30 iterations
 | |
| *>                  per eigenvalue; elements i+1:ihi of W contain
 | |
| *>                  those eigenvalues which have been successfully
 | |
| *>                  computed.
 | |
| *>
 | |
| *>                  If INFO > 0 and WANTT is .FALSE., then on exit,
 | |
| *>                  the remaining unconverged eigenvalues are the
 | |
| *>                  eigenvalues of the upper Hessenberg matrix
 | |
| *>                  rows and columns ILO through INFO of the final,
 | |
| *>                  output value of H.
 | |
| *>
 | |
| *>                  If INFO > 0 and WANTT is .TRUE., then on exit
 | |
| *>          (*)       (initial value of H)*U  = U*(final value of H)
 | |
| *>                  where U is an orthogonal matrix.    The final
 | |
| *>                  value of H is upper Hessenberg and triangular in
 | |
| *>                  rows and columns INFO+1 through IHI.
 | |
| *>
 | |
| *>                  If INFO > 0 and WANTZ is .TRUE., then on exit
 | |
| *>                      (final value of Z)  = (initial value of Z)*U
 | |
| *>                  where U is the orthogonal matrix in (*)
 | |
| *>                  (regardless of the value of WANTT.)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>     02-96 Based on modifications by
 | |
| *>     David Day, Sandia National Laboratory, USA
 | |
| *>
 | |
| *>     12-04 Further modifications by
 | |
| *>     Ralph Byers, University of Kansas, USA
 | |
| *>     This is a modified version of ZLAHQR from LAPACK version 3.0.
 | |
| *>     It is (1) more robust against overflow and underflow and
 | |
| *>     (2) adopts the more conservative Ahues & Tisseur stopping
 | |
| *>     criterion (LAWN 122, 1997).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
 | |
|      $                   IHIZ, Z, LDZ, INFO )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
 | |
|       LOGICAL            WANTT, WANTZ
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         H( LDH, * ), W( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =========================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ZERO, ONE
 | |
|       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
 | |
|      $                   ONE = ( 1.0d0, 0.0d0 ) )
 | |
|       DOUBLE PRECISION   RZERO, RONE, HALF
 | |
|       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0, HALF = 0.5d0 )
 | |
|       DOUBLE PRECISION   DAT1
 | |
|       PARAMETER          ( DAT1 = 3.0d0 / 4.0d0 )
 | |
|       INTEGER            KEXSH
 | |
|       PARAMETER          ( KEXSH = 10 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16         CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U,
 | |
|      $                   V2, X, Y
 | |
|       DOUBLE PRECISION   AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX,
 | |
|      $                   SAFMIN, SMLNUM, SX, T2, TST, ULP
 | |
|       INTEGER            I, I1, I2, ITS, ITMAX, J, JHI, JLO, K, L, M,
 | |
|      $                   NH, NZ, KDEFL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       COMPLEX*16         V( 2 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       COMPLEX*16         ZLADIV
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           ZLADIV, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZCOPY, ZLARFG, ZSCAL
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
|       IF( ILO.EQ.IHI ) THEN
 | |
|          W( ILO ) = H( ILO, ILO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     ==== clear out the trash ====
 | |
|       DO 10 J = ILO, IHI - 3
 | |
|          H( J+2, J ) = ZERO
 | |
|          H( J+3, J ) = ZERO
 | |
|    10 CONTINUE
 | |
|       IF( ILO.LE.IHI-2 )
 | |
|      $   H( IHI, IHI-2 ) = ZERO
 | |
| *     ==== ensure that subdiagonal entries are real ====
 | |
|       IF( WANTT ) THEN
 | |
|          JLO = 1
 | |
|          JHI = N
 | |
|       ELSE
 | |
|          JLO = ILO
 | |
|          JHI = IHI
 | |
|       END IF
 | |
|       DO 20 I = ILO + 1, IHI
 | |
|          IF( DIMAG( H( I, I-1 ) ).NE.RZERO ) THEN
 | |
| *           ==== The following redundant normalization
 | |
| *           .    avoids problems with both gradual and
 | |
| *           .    sudden underflow in ABS(H(I,I-1)) ====
 | |
|             SC = H( I, I-1 ) / CABS1( H( I, I-1 ) )
 | |
|             SC = DCONJG( SC ) / ABS( SC )
 | |
|             H( I, I-1 ) = ABS( H( I, I-1 ) )
 | |
|             CALL ZSCAL( JHI-I+1, SC, H( I, I ), LDH )
 | |
|             CALL ZSCAL( MIN( JHI, I+1 )-JLO+1, DCONJG( SC ),
 | |
|      $                  H( JLO, I ), 1 )
 | |
|             IF( WANTZ )
 | |
|      $         CALL ZSCAL( IHIZ-ILOZ+1, DCONJG( SC ), Z( ILOZ, I ), 1 )
 | |
|          END IF
 | |
|    20 CONTINUE
 | |
| *
 | |
|       NH = IHI - ILO + 1
 | |
|       NZ = IHIZ - ILOZ + 1
 | |
| *
 | |
| *     Set machine-dependent constants for the stopping criterion.
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
 | |
|       SAFMAX = RONE / SAFMIN
 | |
|       ULP = DLAMCH( 'PRECISION' )
 | |
|       SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
 | |
| *
 | |
| *     I1 and I2 are the indices of the first row and last column of H
 | |
| *     to which transformations must be applied. If eigenvalues only are
 | |
| *     being computed, I1 and I2 are set inside the main loop.
 | |
| *
 | |
|       IF( WANTT ) THEN
 | |
|          I1 = 1
 | |
|          I2 = N
 | |
|       END IF
 | |
| *
 | |
| *     ITMAX is the total number of QR iterations allowed.
 | |
| *
 | |
|       ITMAX = 30 * MAX( 10, NH )
 | |
| *
 | |
| *     KDEFL counts the number of iterations since a deflation
 | |
| *
 | |
|       KDEFL = 0
 | |
| *
 | |
| *     The main loop begins here. I is the loop index and decreases from
 | |
| *     IHI to ILO in steps of 1. Each iteration of the loop works
 | |
| *     with the active submatrix in rows and columns L to I.
 | |
| *     Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
 | |
| *     H(L,L-1) is negligible so that the matrix splits.
 | |
| *
 | |
|       I = IHI
 | |
|    30 CONTINUE
 | |
|       IF( I.LT.ILO )
 | |
|      $   GO TO 150
 | |
| *
 | |
| *     Perform QR iterations on rows and columns ILO to I until a
 | |
| *     submatrix of order 1 splits off at the bottom because a
 | |
| *     subdiagonal element has become negligible.
 | |
| *
 | |
|       L = ILO
 | |
|       DO 130 ITS = 0, ITMAX
 | |
| *
 | |
| *        Look for a single small subdiagonal element.
 | |
| *
 | |
|          DO 40 K = I, L + 1, -1
 | |
|             IF( CABS1( H( K, K-1 ) ).LE.SMLNUM )
 | |
|      $         GO TO 50
 | |
|             TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
 | |
|             IF( TST.EQ.ZERO ) THEN
 | |
|                IF( K-2.GE.ILO )
 | |
|      $            TST = TST + ABS( DBLE( H( K-1, K-2 ) ) )
 | |
|                IF( K+1.LE.IHI )
 | |
|      $            TST = TST + ABS( DBLE( H( K+1, K ) ) )
 | |
|             END IF
 | |
| *           ==== The following is a conservative small subdiagonal
 | |
| *           .    deflation criterion due to Ahues & Tisseur (LAWN 122,
 | |
| *           .    1997). It has better mathematical foundation and
 | |
| *           .    improves accuracy in some examples.  ====
 | |
|             IF( ABS( DBLE( H( K, K-1 ) ) ).LE.ULP*TST ) THEN
 | |
|                AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
 | |
|                BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
 | |
|                AA = MAX( CABS1( H( K, K ) ),
 | |
|      $              CABS1( H( K-1, K-1 )-H( K, K ) ) )
 | |
|                BB = MIN( CABS1( H( K, K ) ),
 | |
|      $              CABS1( H( K-1, K-1 )-H( K, K ) ) )
 | |
|                S = AA + AB
 | |
|                IF( BA*( AB / S ).LE.MAX( SMLNUM,
 | |
|      $             ULP*( BB*( AA / S ) ) ) )GO TO 50
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|    50    CONTINUE
 | |
|          L = K
 | |
|          IF( L.GT.ILO ) THEN
 | |
| *
 | |
| *           H(L,L-1) is negligible
 | |
| *
 | |
|             H( L, L-1 ) = ZERO
 | |
|          END IF
 | |
| *
 | |
| *        Exit from loop if a submatrix of order 1 has split off.
 | |
| *
 | |
|          IF( L.GE.I )
 | |
|      $      GO TO 140
 | |
|          KDEFL = KDEFL + 1
 | |
| *
 | |
| *        Now the active submatrix is in rows and columns L to I. If
 | |
| *        eigenvalues only are being computed, only the active submatrix
 | |
| *        need be transformed.
 | |
| *
 | |
|          IF( .NOT.WANTT ) THEN
 | |
|             I1 = L
 | |
|             I2 = I
 | |
|          END IF
 | |
| *
 | |
|          IF( MOD(KDEFL,2*KEXSH).EQ.0 ) THEN
 | |
| *
 | |
| *           Exceptional shift.
 | |
| *
 | |
|             S = DAT1*ABS( DBLE( H( I, I-1 ) ) )
 | |
|             T = S + H( I, I )
 | |
|          ELSE IF( MOD(KDEFL,KEXSH).EQ.0 ) THEN
 | |
| *
 | |
| *           Exceptional shift.
 | |
| *
 | |
|             S = DAT1*ABS( DBLE( H( L+1, L ) ) )
 | |
|             T = S + H( L, L )
 | |
|          ELSE
 | |
| *
 | |
| *           Wilkinson's shift.
 | |
| *
 | |
|             T = H( I, I )
 | |
|             U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) )
 | |
|             S = CABS1( U )
 | |
|             IF( S.NE.RZERO ) THEN
 | |
|                X = HALF*( H( I-1, I-1 )-T )
 | |
|                SX = CABS1( X )
 | |
|                S = MAX( S, CABS1( X ) )
 | |
|                Y = S*SQRT( ( X / S )**2+( U / S )**2 )
 | |
|                IF( SX.GT.RZERO ) THEN
 | |
|                   IF( DBLE( X / SX )*DBLE( Y )+DIMAG( X / SX )*
 | |
|      $                DIMAG( Y ).LT.RZERO )Y = -Y
 | |
|                END IF
 | |
|                T = T - U*ZLADIV( U, ( X+Y ) )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Look for two consecutive small subdiagonal elements.
 | |
| *
 | |
|          DO 60 M = I - 1, L + 1, -1
 | |
| *
 | |
| *           Determine the effect of starting the single-shift QR
 | |
| *           iteration at row M, and see if this would make H(M,M-1)
 | |
| *           negligible.
 | |
| *
 | |
|             H11 = H( M, M )
 | |
|             H22 = H( M+1, M+1 )
 | |
|             H11S = H11 - T
 | |
|             H21 = DBLE( H( M+1, M ) )
 | |
|             S = CABS1( H11S ) + ABS( H21 )
 | |
|             H11S = H11S / S
 | |
|             H21 = H21 / S
 | |
|             V( 1 ) = H11S
 | |
|             V( 2 ) = H21
 | |
|             H10 = DBLE( H( M, M-1 ) )
 | |
|             IF( ABS( H10 )*ABS( H21 ).LE.ULP*
 | |
|      $          ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) )
 | |
|      $          GO TO 70
 | |
|    60    CONTINUE
 | |
|          H11 = H( L, L )
 | |
|          H22 = H( L+1, L+1 )
 | |
|          H11S = H11 - T
 | |
|          H21 = DBLE( H( L+1, L ) )
 | |
|          S = CABS1( H11S ) + ABS( H21 )
 | |
|          H11S = H11S / S
 | |
|          H21 = H21 / S
 | |
|          V( 1 ) = H11S
 | |
|          V( 2 ) = H21
 | |
|    70    CONTINUE
 | |
| *
 | |
| *        Single-shift QR step
 | |
| *
 | |
|          DO 120 K = M, I - 1
 | |
| *
 | |
| *           The first iteration of this loop determines a reflection G
 | |
| *           from the vector V and applies it from left and right to H,
 | |
| *           thus creating a nonzero bulge below the subdiagonal.
 | |
| *
 | |
| *           Each subsequent iteration determines a reflection G to
 | |
| *           restore the Hessenberg form in the (K-1)th column, and thus
 | |
| *           chases the bulge one step toward the bottom of the active
 | |
| *           submatrix.
 | |
| *
 | |
| *           V(2) is always real before the call to ZLARFG, and hence
 | |
| *           after the call T2 ( = T1*V(2) ) is also real.
 | |
| *
 | |
|             IF( K.GT.M )
 | |
|      $         CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
 | |
|             CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
 | |
|             IF( K.GT.M ) THEN
 | |
|                H( K, K-1 ) = V( 1 )
 | |
|                H( K+1, K-1 ) = ZERO
 | |
|             END IF
 | |
|             V2 = V( 2 )
 | |
|             T2 = DBLE( T1*V2 )
 | |
| *
 | |
| *           Apply G from the left to transform the rows of the matrix
 | |
| *           in columns K to I2.
 | |
| *
 | |
|             DO 80 J = K, I2
 | |
|                SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
 | |
|                H( K, J ) = H( K, J ) - SUM
 | |
|                H( K+1, J ) = H( K+1, J ) - SUM*V2
 | |
|    80       CONTINUE
 | |
| *
 | |
| *           Apply G from the right to transform the columns of the
 | |
| *           matrix in rows I1 to min(K+2,I).
 | |
| *
 | |
|             DO 90 J = I1, MIN( K+2, I )
 | |
|                SUM = T1*H( J, K ) + T2*H( J, K+1 )
 | |
|                H( J, K ) = H( J, K ) - SUM
 | |
|                H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
 | |
|    90       CONTINUE
 | |
| *
 | |
|             IF( WANTZ ) THEN
 | |
| *
 | |
| *              Accumulate transformations in the matrix Z
 | |
| *
 | |
|                DO 100 J = ILOZ, IHIZ
 | |
|                   SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
 | |
|                   Z( J, K ) = Z( J, K ) - SUM
 | |
|                   Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
 | |
|   100          CONTINUE
 | |
|             END IF
 | |
| *
 | |
|             IF( K.EQ.M .AND. M.GT.L ) THEN
 | |
| *
 | |
| *              If the QR step was started at row M > L because two
 | |
| *              consecutive small subdiagonals were found, then extra
 | |
| *              scaling must be performed to ensure that H(M,M-1) remains
 | |
| *              real.
 | |
| *
 | |
|                TEMP = ONE - T1
 | |
|                TEMP = TEMP / ABS( TEMP )
 | |
|                H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
 | |
|                IF( M+2.LE.I )
 | |
|      $            H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
 | |
|                DO 110 J = M, I
 | |
|                   IF( J.NE.M+1 ) THEN
 | |
|                      IF( I2.GT.J )
 | |
|      $                  CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
 | |
|                      CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
 | |
|                      IF( WANTZ ) THEN
 | |
|                         CALL ZSCAL( NZ, DCONJG( TEMP ), Z( ILOZ, J ),
 | |
|      $                              1 )
 | |
|                      END IF
 | |
|                   END IF
 | |
|   110          CONTINUE
 | |
|             END IF
 | |
|   120    CONTINUE
 | |
| *
 | |
| *        Ensure that H(I,I-1) is real.
 | |
| *
 | |
|          TEMP = H( I, I-1 )
 | |
|          IF( DIMAG( TEMP ).NE.RZERO ) THEN
 | |
|             RTEMP = ABS( TEMP )
 | |
|             H( I, I-1 ) = RTEMP
 | |
|             TEMP = TEMP / RTEMP
 | |
|             IF( I2.GT.I )
 | |
|      $         CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
 | |
|             CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
 | |
|             IF( WANTZ ) THEN
 | |
|                CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|   130 CONTINUE
 | |
| *
 | |
| *     Failure to converge in remaining number of iterations
 | |
| *
 | |
|       INFO = I
 | |
|       RETURN
 | |
| *
 | |
|   140 CONTINUE
 | |
| *
 | |
| *     H(I,I-1) is negligible: one eigenvalue has converged.
 | |
| *
 | |
|       W( I ) = H( I, I )
 | |
| *     reset deflation counter
 | |
|       KDEFL = 0
 | |
| *
 | |
| *     return to start of the main loop with new value of I.
 | |
| *
 | |
|       I = L - 1
 | |
|       GO TO 30
 | |
| *
 | |
|   150 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLAHQR
 | |
| *
 | |
|       END
 | |
| 
 |