You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
6.3 KiB
223 lines
6.3 KiB
*> \brief \b ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZLANGB + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlangb.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlangb.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlangb.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
|
|
* WORK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER NORM
|
|
* INTEGER KL, KU, LDAB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION WORK( * )
|
|
* COMPLEX*16 AB( LDAB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLANGB returns the value of the one norm, or the Frobenius norm, or
|
|
*> the infinity norm, or the element of largest absolute value of an
|
|
*> n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
|
|
*> \endverbatim
|
|
*>
|
|
*> \return ZLANGB
|
|
*> \verbatim
|
|
*>
|
|
*> ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
|
*> (
|
|
*> ( norm1(A), NORM = '1', 'O' or 'o'
|
|
*> (
|
|
*> ( normI(A), NORM = 'I' or 'i'
|
|
*> (
|
|
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
|
*>
|
|
*> where norm1 denotes the one norm of a matrix (maximum column sum),
|
|
*> normI denotes the infinity norm of a matrix (maximum row sum) and
|
|
*> normF denotes the Frobenius norm of a matrix (square root of sum of
|
|
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] NORM
|
|
*> \verbatim
|
|
*> NORM is CHARACTER*1
|
|
*> Specifies the value to be returned in ZLANGB as described
|
|
*> above.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0. When N = 0, ZLANGB is
|
|
*> set to zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> The number of sub-diagonals of the matrix A. KL >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> The number of super-diagonals of the matrix A. KU >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX*16 array, dimension (LDAB,N)
|
|
*> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
|
|
*> column of A is stored in the j-th column of the array AB as
|
|
*> follows:
|
|
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
|
|
*> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
|
|
*> referenced.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GBauxiliary
|
|
*
|
|
* =====================================================================
|
|
DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
|
|
$ WORK )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER NORM
|
|
INTEGER KL, KU, LDAB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION WORK( * )
|
|
COMPLEX*16 AB( LDAB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, K, L
|
|
DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME, DISNAN
|
|
EXTERNAL LSAME, DISNAN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZLASSQ
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
VALUE = ZERO
|
|
ELSE IF( LSAME( NORM, 'M' ) ) THEN
|
|
*
|
|
* Find max(abs(A(i,j))).
|
|
*
|
|
VALUE = ZERO
|
|
DO 20 J = 1, N
|
|
DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
|
|
TEMP = ABS( AB( I, J ) )
|
|
IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
|
|
*
|
|
* Find norm1(A).
|
|
*
|
|
VALUE = ZERO
|
|
DO 40 J = 1, N
|
|
SUM = ZERO
|
|
DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
|
|
SUM = SUM + ABS( AB( I, J ) )
|
|
30 CONTINUE
|
|
IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
|
|
40 CONTINUE
|
|
ELSE IF( LSAME( NORM, 'I' ) ) THEN
|
|
*
|
|
* Find normI(A).
|
|
*
|
|
DO 50 I = 1, N
|
|
WORK( I ) = ZERO
|
|
50 CONTINUE
|
|
DO 70 J = 1, N
|
|
K = KU + 1 - J
|
|
DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
|
|
WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
VALUE = ZERO
|
|
DO 80 I = 1, N
|
|
TEMP = WORK( I )
|
|
IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
|
|
80 CONTINUE
|
|
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
|
*
|
|
* Find normF(A).
|
|
*
|
|
SCALE = ZERO
|
|
SUM = ONE
|
|
DO 90 J = 1, N
|
|
L = MAX( 1, J-KU )
|
|
K = KU + 1 - J + L
|
|
CALL ZLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
|
|
90 CONTINUE
|
|
VALUE = SCALE*SQRT( SUM )
|
|
END IF
|
|
*
|
|
ZLANGB = VALUE
|
|
RETURN
|
|
*
|
|
* End of ZLANGB
|
|
*
|
|
END
|
|
|