You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
270 lines
7.6 KiB
270 lines
7.6 KiB
*> \brief \b ZLATSQR
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
|
|
* LWORK, INFO)
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLATSQR computes a blocked Tall-Skinny QR factorization of
|
|
*> a complex M-by-N matrix A for M >= N:
|
|
*>
|
|
*> A = Q * ( R ),
|
|
*> ( 0 )
|
|
*>
|
|
*> where:
|
|
*>
|
|
*> Q is a M-by-M orthogonal matrix, stored on exit in an implicit
|
|
*> form in the elements below the diagonal of the array A and in
|
|
*> the elements of the array T;
|
|
*>
|
|
*> R is an upper-triangular N-by-N matrix, stored on exit in
|
|
*> the elements on and above the diagonal of the array A.
|
|
*>
|
|
*> 0 is a (M-N)-by-N zero matrix, and is not stored.
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. M >= N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MB
|
|
*> \verbatim
|
|
*> MB is INTEGER
|
|
*> The row block size to be used in the blocked QR.
|
|
*> MB > N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NB
|
|
*> \verbatim
|
|
*> NB is INTEGER
|
|
*> The column block size to be used in the blocked QR.
|
|
*> N >= NB >= 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit, the elements on and above the diagonal
|
|
*> of the array contain the N-by-N upper triangular matrix R;
|
|
*> the elements below the diagonal represent Q by the columns
|
|
*> of blocked V (see Further Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] T
|
|
*> \verbatim
|
|
*> T is COMPLEX*16 array,
|
|
*> dimension (LDT, N * Number_of_row_blocks)
|
|
*> where Number_of_row_blocks = CEIL((M-N)/(MB-N))
|
|
*> The blocked upper triangular block reflectors stored in compact form
|
|
*> as a sequence of upper triangular blocks.
|
|
*> See Further Details below.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T. LDT >= NB.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= NB*N.
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
|
|
*> representing Q as a product of other orthogonal matrices
|
|
*> Q = Q(1) * Q(2) * . . . * Q(k)
|
|
*> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
|
|
*> Q(1) zeros out the subdiagonal entries of rows 1:MB of A
|
|
*> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
|
|
*> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
|
|
*> . . .
|
|
*>
|
|
*> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
|
|
*> stored under the diagonal of rows 1:MB of A, and by upper triangular
|
|
*> block reflectors, stored in array T(1:LDT,1:N).
|
|
*> For more information see Further Details in GEQRT.
|
|
*>
|
|
*> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
|
|
*> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
|
|
*> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
|
|
*> The last Q(k) may use fewer rows.
|
|
*> For more information see Further Details in TPQRT.
|
|
*>
|
|
*> For more details of the overall algorithm, see the description of
|
|
*> Sequential TSQR in Section 2.2 of [1].
|
|
*>
|
|
*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
|
|
*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
|
|
*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
|
|
$ LWORK, INFO)
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), WORK( * ), T(LDT, *)
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY
|
|
INTEGER I, II, KK, CTR
|
|
* ..
|
|
* .. EXTERNAL FUNCTIONS ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* .. EXTERNAL SUBROUTINES ..
|
|
EXTERNAL ZGEQRT, ZTPQRT, XERBLA
|
|
* .. INTRINSIC FUNCTIONS ..
|
|
INTRINSIC MAX, MIN, MOD
|
|
* ..
|
|
* .. EXECUTABLE STATEMENTS ..
|
|
*
|
|
* TEST THE INPUT ARGUMENTS
|
|
*
|
|
INFO = 0
|
|
*
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
*
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
|
|
INFO = -2
|
|
ELSE IF( MB.LT.1 ) THEN
|
|
INFO = -3
|
|
ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN
|
|
INFO = -4
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDT.LT.NB ) THEN
|
|
INFO = -8
|
|
ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN
|
|
INFO = -10
|
|
END IF
|
|
IF( INFO.EQ.0) THEN
|
|
WORK(1) = NB*N
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZLATSQR', -INFO )
|
|
RETURN
|
|
ELSE IF (LQUERY) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( MIN(M,N).EQ.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* The QR Decomposition
|
|
*
|
|
IF ((MB.LE.N).OR.(MB.GE.M)) THEN
|
|
CALL ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO)
|
|
RETURN
|
|
END IF
|
|
KK = MOD((M-N),(MB-N))
|
|
II=M-KK+1
|
|
*
|
|
* Compute the QR factorization of the first block A(1:MB,1:N)
|
|
*
|
|
CALL ZGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO )
|
|
CTR = 1
|
|
*
|
|
DO I = MB+1, II-MB+N , (MB-N)
|
|
*
|
|
* Compute the QR factorization of the current block A(I:I+MB-N,1:N)
|
|
*
|
|
CALL ZTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA,
|
|
$ T(1, CTR * N + 1),
|
|
$ LDT, WORK, INFO )
|
|
CTR = CTR + 1
|
|
END DO
|
|
*
|
|
* Compute the QR factorization of the last block A(II:M,1:N)
|
|
*
|
|
IF (II.LE.M) THEN
|
|
CALL ZTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA,
|
|
$ T(1,CTR * N + 1), LDT,
|
|
$ WORK, INFO )
|
|
END IF
|
|
*
|
|
work( 1 ) = N*NB
|
|
RETURN
|
|
*
|
|
* End of ZLATSQR
|
|
*
|
|
END
|
|
|