You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
5.4 KiB
204 lines
5.4 KiB
*> \brief \b ZPOEQU
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZPOEQU + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpoequ.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpoequ.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpoequ.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, N
|
|
* DOUBLE PRECISION AMAX, SCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION S( * )
|
|
* COMPLEX*16 A( LDA, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZPOEQU computes row and column scalings intended to equilibrate a
|
|
*> Hermitian positive definite matrix A and reduce its condition number
|
|
*> (with respect to the two-norm). S contains the scale factors,
|
|
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
|
|
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
|
|
*> choice of S puts the condition number of B within a factor N of the
|
|
*> smallest possible condition number over all possible diagonal
|
|
*> scalings.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> The N-by-N Hermitian positive definite matrix whose scaling
|
|
*> factors are to be computed. Only the diagonal elements of A
|
|
*> are referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is DOUBLE PRECISION array, dimension (N)
|
|
*> If INFO = 0, S contains the scale factors for A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCOND
|
|
*> \verbatim
|
|
*> SCOND is DOUBLE PRECISION
|
|
*> If INFO = 0, S contains the ratio of the smallest S(i) to
|
|
*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
|
|
*> large nor too small, it is not worth scaling by S.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AMAX
|
|
*> \verbatim
|
|
*> AMAX is DOUBLE PRECISION
|
|
*> Absolute value of largest matrix element. If AMAX is very
|
|
*> close to overflow or very close to underflow, the matrix
|
|
*> should be scaled.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, the i-th diagonal element is nonpositive.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16POcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, N
|
|
DOUBLE PRECISION AMAX, SCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION S( * )
|
|
COMPLEX*16 A( LDA, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I
|
|
DOUBLE PRECISION SMIN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -3
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZPOEQU', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
SCOND = ONE
|
|
AMAX = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Find the minimum and maximum diagonal elements.
|
|
*
|
|
S( 1 ) = DBLE( A( 1, 1 ) )
|
|
SMIN = S( 1 )
|
|
AMAX = S( 1 )
|
|
DO 10 I = 2, N
|
|
S( I ) = DBLE( A( I, I ) )
|
|
SMIN = MIN( SMIN, S( I ) )
|
|
AMAX = MAX( AMAX, S( I ) )
|
|
10 CONTINUE
|
|
*
|
|
IF( SMIN.LE.ZERO ) THEN
|
|
*
|
|
* Find the first non-positive diagonal element and return.
|
|
*
|
|
DO 20 I = 1, N
|
|
IF( S( I ).LE.ZERO ) THEN
|
|
INFO = I
|
|
RETURN
|
|
END IF
|
|
20 CONTINUE
|
|
ELSE
|
|
*
|
|
* Set the scale factors to the reciprocals
|
|
* of the diagonal elements.
|
|
*
|
|
DO 30 I = 1, N
|
|
S( I ) = ONE / SQRT( S( I ) )
|
|
30 CONTINUE
|
|
*
|
|
* Compute SCOND = min(S(I)) / max(S(I))
|
|
*
|
|
SCOND = SQRT( SMIN ) / SQRT( AMAX )
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of ZPOEQU
|
|
*
|
|
END
|
|
|