You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
242 lines
6.7 KiB
242 lines
6.7 KiB
*> \brief \b ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZPTTS2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptts2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptts2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptts2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER IUPLO, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * )
|
|
* COMPLEX*16 B( LDB, * ), E( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZPTTS2 solves a tridiagonal system of the form
|
|
*> A * X = B
|
|
*> using the factorization A = U**H *D*U or A = L*D*L**H computed by ZPTTRF.
|
|
*> D is a diagonal matrix specified in the vector D, U (or L) is a unit
|
|
*> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
|
|
*> the vector E, and X and B are N by NRHS matrices.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] IUPLO
|
|
*> \verbatim
|
|
*> IUPLO is INTEGER
|
|
*> Specifies the form of the factorization and whether the
|
|
*> vector E is the superdiagonal of the upper bidiagonal factor
|
|
*> U or the subdiagonal of the lower bidiagonal factor L.
|
|
*> = 1: A = U**H *D*U, E is the superdiagonal of U
|
|
*> = 0: A = L*D*L**H, E is the subdiagonal of L
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the tridiagonal matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrix B. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The n diagonal elements of the diagonal matrix D from the
|
|
*> factorization A = U**H *D*U or A = L*D*L**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is COMPLEX*16 array, dimension (N-1)
|
|
*> If IUPLO = 1, the (n-1) superdiagonal elements of the unit
|
|
*> bidiagonal factor U from the factorization A = U**H*D*U.
|
|
*> If IUPLO = 0, the (n-1) subdiagonal elements of the unit
|
|
*> bidiagonal factor L from the factorization A = L*D*L**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
|
|
*> On entry, the right hand side vectors B for the system of
|
|
*> linear equations.
|
|
*> On exit, the solution vectors, X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16PTcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER IUPLO, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * )
|
|
COMPLEX*16 B( LDB, * ), E( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER I, J
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZDSCAL
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DCONJG
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.1 ) THEN
|
|
IF( N.EQ.1 )
|
|
$ CALL ZDSCAL( NRHS, 1.D0 / D( 1 ), B, LDB )
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
*
|
|
* Solve A * X = B using the factorization A = U**H *D*U,
|
|
* overwriting each right hand side vector with its solution.
|
|
*
|
|
IF( NRHS.LE.2 ) THEN
|
|
J = 1
|
|
10 CONTINUE
|
|
*
|
|
* Solve U**H * x = b.
|
|
*
|
|
DO 20 I = 2, N
|
|
B( I, J ) = B( I, J ) - B( I-1, J )*DCONJG( E( I-1 ) )
|
|
20 CONTINUE
|
|
*
|
|
* Solve D * U * x = b.
|
|
*
|
|
DO 30 I = 1, N
|
|
B( I, J ) = B( I, J ) / D( I )
|
|
30 CONTINUE
|
|
DO 40 I = N - 1, 1, -1
|
|
B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
|
|
40 CONTINUE
|
|
IF( J.LT.NRHS ) THEN
|
|
J = J + 1
|
|
GO TO 10
|
|
END IF
|
|
ELSE
|
|
DO 70 J = 1, NRHS
|
|
*
|
|
* Solve U**H * x = b.
|
|
*
|
|
DO 50 I = 2, N
|
|
B( I, J ) = B( I, J ) - B( I-1, J )*DCONJG( E( I-1 ) )
|
|
50 CONTINUE
|
|
*
|
|
* Solve D * U * x = b.
|
|
*
|
|
B( N, J ) = B( N, J ) / D( N )
|
|
DO 60 I = N - 1, 1, -1
|
|
B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Solve A * X = B using the factorization A = L*D*L**H,
|
|
* overwriting each right hand side vector with its solution.
|
|
*
|
|
IF( NRHS.LE.2 ) THEN
|
|
J = 1
|
|
80 CONTINUE
|
|
*
|
|
* Solve L * x = b.
|
|
*
|
|
DO 90 I = 2, N
|
|
B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
|
|
90 CONTINUE
|
|
*
|
|
* Solve D * L**H * x = b.
|
|
*
|
|
DO 100 I = 1, N
|
|
B( I, J ) = B( I, J ) / D( I )
|
|
100 CONTINUE
|
|
DO 110 I = N - 1, 1, -1
|
|
B( I, J ) = B( I, J ) - B( I+1, J )*DCONJG( E( I ) )
|
|
110 CONTINUE
|
|
IF( J.LT.NRHS ) THEN
|
|
J = J + 1
|
|
GO TO 80
|
|
END IF
|
|
ELSE
|
|
DO 140 J = 1, NRHS
|
|
*
|
|
* Solve L * x = b.
|
|
*
|
|
DO 120 I = 2, N
|
|
B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
|
|
120 CONTINUE
|
|
*
|
|
* Solve D * L**H * x = b.
|
|
*
|
|
B( N, J ) = B( N, J ) / D( N )
|
|
DO 130 I = N - 1, 1, -1
|
|
B( I, J ) = B( I, J ) / D( I ) -
|
|
$ B( I+1, J )*DCONJG( E( I ) )
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZPTTS2
|
|
*
|
|
END
|
|
|