You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
489 lines
15 KiB
489 lines
15 KiB
*> \brief \b ZTFTRI
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZTFTRI + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztftri.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztftri.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztftri.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANSR, UPLO, DIAG
|
|
* INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( 0: * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZTFTRI computes the inverse of a triangular matrix A stored in RFP
|
|
*> format.
|
|
*>
|
|
*> This is a Level 3 BLAS version of the algorithm.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANSR
|
|
*> \verbatim
|
|
*> TRANSR is CHARACTER*1
|
|
*> = 'N': The Normal TRANSR of RFP A is stored;
|
|
*> = 'C': The Conjugate-transpose TRANSR of RFP A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': A is upper triangular;
|
|
*> = 'L': A is lower triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> = 'N': A is non-unit triangular;
|
|
*> = 'U': A is unit triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
|
|
*> On entry, the triangular matrix A in RFP format. RFP format
|
|
*> is described by TRANSR, UPLO, and N as follows: If TRANSR =
|
|
*> 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
|
|
*> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
|
|
*> the Conjugate-transpose of RFP A as defined when
|
|
*> TRANSR = 'N'. The contents of RFP A are defined by UPLO as
|
|
*> follows: If UPLO = 'U' the RFP A contains the nt elements of
|
|
*> upper packed A; If UPLO = 'L' the RFP A contains the nt
|
|
*> elements of lower packed A. The LDA of RFP A is (N+1)/2 when
|
|
*> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is
|
|
*> even and N is odd. See the Note below for more details.
|
|
*>
|
|
*> On exit, the (triangular) inverse of the original matrix, in
|
|
*> the same storage format.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
|
|
*> matrix is singular and its inverse can not be computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> We first consider Standard Packed Format when N is even.
|
|
*> We give an example where N = 6.
|
|
*>
|
|
*> AP is Upper AP is Lower
|
|
*>
|
|
*> 00 01 02 03 04 05 00
|
|
*> 11 12 13 14 15 10 11
|
|
*> 22 23 24 25 20 21 22
|
|
*> 33 34 35 30 31 32 33
|
|
*> 44 45 40 41 42 43 44
|
|
*> 55 50 51 52 53 54 55
|
|
*>
|
|
*>
|
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
|
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
|
|
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
|
|
*> conjugate-transpose of the first three columns of AP upper.
|
|
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
|
|
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
|
|
*> conjugate-transpose of the last three columns of AP lower.
|
|
*> To denote conjugate we place -- above the element. This covers the
|
|
*> case N even and TRANSR = 'N'.
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- --
|
|
*> 03 04 05 33 43 53
|
|
*> -- --
|
|
*> 13 14 15 00 44 54
|
|
*> --
|
|
*> 23 24 25 10 11 55
|
|
*>
|
|
*> 33 34 35 20 21 22
|
|
*> --
|
|
*> 00 44 45 30 31 32
|
|
*> -- --
|
|
*> 01 11 55 40 41 42
|
|
*> -- -- --
|
|
*> 02 12 22 50 51 52
|
|
*>
|
|
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
|
|
*> transpose of RFP A above. One therefore gets:
|
|
*>
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
|
|
*>
|
|
*>
|
|
*> We next consider Standard Packed Format when N is odd.
|
|
*> We give an example where N = 5.
|
|
*>
|
|
*> AP is Upper AP is Lower
|
|
*>
|
|
*> 00 01 02 03 04 00
|
|
*> 11 12 13 14 10 11
|
|
*> 22 23 24 20 21 22
|
|
*> 33 34 30 31 32 33
|
|
*> 44 40 41 42 43 44
|
|
*>
|
|
*>
|
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
|
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
|
|
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
|
|
*> conjugate-transpose of the first two columns of AP upper.
|
|
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
|
|
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
|
|
*> conjugate-transpose of the last two columns of AP lower.
|
|
*> To denote conjugate we place -- above the element. This covers the
|
|
*> case N odd and TRANSR = 'N'.
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- --
|
|
*> 02 03 04 00 33 43
|
|
*> --
|
|
*> 12 13 14 10 11 44
|
|
*>
|
|
*> 22 23 24 20 21 22
|
|
*> --
|
|
*> 00 33 34 30 31 32
|
|
*> -- --
|
|
*> 01 11 44 40 41 42
|
|
*>
|
|
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
|
|
*> transpose of RFP A above. One therefore gets:
|
|
*>
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 02 12 22 00 01 00 10 20 30 40 50
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 03 13 23 33 11 33 11 21 31 41 51
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 04 14 24 34 44 43 44 22 32 42 52
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANSR, UPLO, DIAG
|
|
INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( 0: * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 CONE
|
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LOWER, NISODD, NORMALTRANSR
|
|
INTEGER N1, N2, K
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZTRMM, ZTRTRI
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MOD
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
NORMALTRANSR = LSAME( TRANSR, 'N' )
|
|
LOWER = LSAME( UPLO, 'L' )
|
|
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
|
|
$ THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZTFTRI', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* If N is odd, set NISODD = .TRUE.
|
|
* If N is even, set K = N/2 and NISODD = .FALSE.
|
|
*
|
|
IF( MOD( N, 2 ).EQ.0 ) THEN
|
|
K = N / 2
|
|
NISODD = .FALSE.
|
|
ELSE
|
|
NISODD = .TRUE.
|
|
END IF
|
|
*
|
|
* Set N1 and N2 depending on LOWER
|
|
*
|
|
IF( LOWER ) THEN
|
|
N2 = N / 2
|
|
N1 = N - N2
|
|
ELSE
|
|
N1 = N / 2
|
|
N2 = N - N1
|
|
END IF
|
|
*
|
|
*
|
|
* start execution: there are eight cases
|
|
*
|
|
IF( NISODD ) THEN
|
|
*
|
|
* N is odd
|
|
*
|
|
IF( NORMALTRANSR ) THEN
|
|
*
|
|
* N is odd and TRANSR = 'N'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
|
|
* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
|
|
* T1 -> a(0), T2 -> a(n), S -> a(n1)
|
|
*
|
|
CALL ZTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'R', 'L', 'N', DIAG, N2, N1, -CONE, A( 0 ),
|
|
$ N, A( N1 ), N )
|
|
CALL ZTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ INFO = INFO + N1
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'L', 'U', 'C', DIAG, N2, N1, CONE, A( N ), N,
|
|
$ A( N1 ), N )
|
|
*
|
|
ELSE
|
|
*
|
|
* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
|
|
* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
|
|
* T1 -> a(n2), T2 -> a(n1), S -> a(0)
|
|
*
|
|
CALL ZTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'L', 'L', 'C', DIAG, N1, N2, -CONE, A( N2 ),
|
|
$ N, A( 0 ), N )
|
|
CALL ZTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ INFO = INFO + N1
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'R', 'U', 'N', DIAG, N1, N2, CONE, A( N1 ),
|
|
$ N, A( 0 ), N )
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* N is odd and TRANSR = 'C'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SRPA for LOWER, TRANSPOSE and N is odd
|
|
* T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
|
|
*
|
|
CALL ZTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'L', 'U', 'N', DIAG, N1, N2, -CONE, A( 0 ),
|
|
$ N1, A( N1*N1 ), N1 )
|
|
CALL ZTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ INFO = INFO + N1
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'R', 'L', 'C', DIAG, N1, N2, CONE, A( 1 ),
|
|
$ N1, A( N1*N1 ), N1 )
|
|
*
|
|
ELSE
|
|
*
|
|
* SRPA for UPPER, TRANSPOSE and N is odd
|
|
* T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
|
|
*
|
|
CALL ZTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'R', 'U', 'C', DIAG, N2, N1, -CONE,
|
|
$ A( N2*N2 ), N2, A( 0 ), N2 )
|
|
CALL ZTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ INFO = INFO + N1
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'L', 'L', 'N', DIAG, N2, N1, CONE,
|
|
$ A( N1*N2 ), N2, A( 0 ), N2 )
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* N is even
|
|
*
|
|
IF( NORMALTRANSR ) THEN
|
|
*
|
|
* N is even and TRANSR = 'N'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
|
|
* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
|
|
* T1 -> a(1), T2 -> a(0), S -> a(k+1)
|
|
*
|
|
CALL ZTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'R', 'L', 'N', DIAG, K, K, -CONE, A( 1 ),
|
|
$ N+1, A( K+1 ), N+1 )
|
|
CALL ZTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ INFO = INFO + K
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'L', 'U', 'C', DIAG, K, K, CONE, A( 0 ), N+1,
|
|
$ A( K+1 ), N+1 )
|
|
*
|
|
ELSE
|
|
*
|
|
* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
|
|
* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
|
|
* T1 -> a(k+1), T2 -> a(k), S -> a(0)
|
|
*
|
|
CALL ZTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'L', 'L', 'C', DIAG, K, K, -CONE, A( K+1 ),
|
|
$ N+1, A( 0 ), N+1 )
|
|
CALL ZTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ INFO = INFO + K
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'R', 'U', 'N', DIAG, K, K, CONE, A( K ), N+1,
|
|
$ A( 0 ), N+1 )
|
|
END IF
|
|
ELSE
|
|
*
|
|
* N is even and TRANSR = 'C'
|
|
*
|
|
IF( LOWER ) THEN
|
|
*
|
|
* SRPA for LOWER, TRANSPOSE and N is even (see paper)
|
|
* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
|
|
* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
|
|
*
|
|
CALL ZTRTRI( 'U', DIAG, K, A( K ), K, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'L', 'U', 'N', DIAG, K, K, -CONE, A( K ), K,
|
|
$ A( K*( K+1 ) ), K )
|
|
CALL ZTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ INFO = INFO + K
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'R', 'L', 'C', DIAG, K, K, CONE, A( 0 ), K,
|
|
$ A( K*( K+1 ) ), K )
|
|
ELSE
|
|
*
|
|
* SRPA for UPPER, TRANSPOSE and N is even (see paper)
|
|
* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
|
|
* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
|
|
*
|
|
CALL ZTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'R', 'U', 'C', DIAG, K, K, -CONE,
|
|
$ A( K*( K+1 ) ), K, A( 0 ), K )
|
|
CALL ZTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ INFO = INFO + K
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
CALL ZTRMM( 'L', 'L', 'N', DIAG, K, K, CONE, A( K*K ), K,
|
|
$ A( 0 ), K )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZTFTRI
|
|
*
|
|
END
|
|
|