You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
439 lines
14 KiB
439 lines
14 KiB
*> \brief \b ZUNHR_COL
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZUNHR_COL + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunhr_col.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunhr_col.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunhr_col.f">
|
|
*> [TXT]</a
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LDT, M, N, NB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), D( * ), T( LDT, * )
|
|
* ..
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns
|
|
*> as input, stored in A, and performs Householder Reconstruction (HR),
|
|
*> i.e. reconstructs Householder vectors V(i) implicitly representing
|
|
*> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
|
|
*> where S is an N-by-N diagonal matrix with diagonal entries
|
|
*> equal to +1 or -1. The Householder vectors (columns V(i) of V) are
|
|
*> stored in A on output, and the diagonal entries of S are stored in D.
|
|
*> Block reflectors are also returned in T
|
|
*> (same output format as ZGEQRT).
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. M >= N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NB
|
|
*> \verbatim
|
|
*> NB is INTEGER
|
|
*> The column block size to be used in the reconstruction
|
|
*> of Householder column vector blocks in the array A and
|
|
*> corresponding block reflectors in the array T. NB >= 1.
|
|
*> (Note that if NB > N, then N is used instead of NB
|
|
*> as the column block size.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*>
|
|
*> On entry:
|
|
*>
|
|
*> The array A contains an M-by-N orthonormal matrix Q_in,
|
|
*> i.e the columns of A are orthogonal unit vectors.
|
|
*>
|
|
*> On exit:
|
|
*>
|
|
*> The elements below the diagonal of A represent the unit
|
|
*> lower-trapezoidal matrix V of Householder column vectors
|
|
*> V(i). The unit diagonal entries of V are not stored
|
|
*> (same format as the output below the diagonal in A from
|
|
*> ZGEQRT). The matrix T and the matrix V stored on output
|
|
*> in A implicitly define Q_out.
|
|
*>
|
|
*> The elements above the diagonal contain the factor U
|
|
*> of the "modified" LU-decomposition:
|
|
*> Q_in - ( S ) = V * U
|
|
*> ( 0 )
|
|
*> where 0 is a (M-N)-by-(M-N) zero matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] T
|
|
*> \verbatim
|
|
*> T is COMPLEX*16 array,
|
|
*> dimension (LDT, N)
|
|
*>
|
|
*> Let NOCB = Number_of_output_col_blocks
|
|
*> = CEIL(N/NB)
|
|
*>
|
|
*> On exit, T(1:NB, 1:N) contains NOCB upper-triangular
|
|
*> block reflectors used to define Q_out stored in compact
|
|
*> form as a sequence of upper-triangular NB-by-NB column
|
|
*> blocks (same format as the output T in ZGEQRT).
|
|
*> The matrix T and the matrix V stored on output in A
|
|
*> implicitly define Q_out. NOTE: The lower triangles
|
|
*> below the upper-triangular blocks will be filled with
|
|
*> zeros. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T.
|
|
*> LDT >= max(1,min(NB,N)).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is COMPLEX*16 array, dimension min(M,N).
|
|
*> The elements can be only plus or minus one.
|
|
*>
|
|
*> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
|
|
*> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing
|
|
*> i-1 steps of “modified” Gaussian elimination.
|
|
*> See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*>
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The computed M-by-M unitary factor Q_out is defined implicitly as
|
|
*> a product of unitary matrices Q_out(i). Each Q_out(i) is stored in
|
|
*> the compact WY-representation format in the corresponding blocks of
|
|
*> matrices V (stored in A) and T.
|
|
*>
|
|
*> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
|
|
*> matrix A contains the column vectors V(i) in NB-size column
|
|
*> blocks VB(j). For example, VB(1) contains the columns
|
|
*> V(1), V(2), ... V(NB). NOTE: The unit entries on
|
|
*> the diagonal of Y are not stored in A.
|
|
*>
|
|
*> The number of column blocks is
|
|
*>
|
|
*> NOCB = Number_of_output_col_blocks = CEIL(N/NB)
|
|
*>
|
|
*> where each block is of order NB except for the last block, which
|
|
*> is of order LAST_NB = N - (NOCB-1)*NB.
|
|
*>
|
|
*> For example, if M=6, N=5 and NB=2, the matrix V is
|
|
*>
|
|
*>
|
|
*> V = ( VB(1), VB(2), VB(3) ) =
|
|
*>
|
|
*> = ( 1 )
|
|
*> ( v21 1 )
|
|
*> ( v31 v32 1 )
|
|
*> ( v41 v42 v43 1 )
|
|
*> ( v51 v52 v53 v54 1 )
|
|
*> ( v61 v62 v63 v54 v65 )
|
|
*>
|
|
*>
|
|
*> For each of the column blocks VB(i), an upper-triangular block
|
|
*> reflector TB(i) is computed. These blocks are stored as
|
|
*> a sequence of upper-triangular column blocks in the NB-by-N
|
|
*> matrix T. The size of each TB(i) block is NB-by-NB, except
|
|
*> for the last block, whose size is LAST_NB-by-LAST_NB.
|
|
*>
|
|
*> For example, if M=6, N=5 and NB=2, the matrix T is
|
|
*>
|
|
*> T = ( TB(1), TB(2), TB(3) ) =
|
|
*>
|
|
*> = ( t11 t12 t13 t14 t15 )
|
|
*> ( t22 t24 )
|
|
*>
|
|
*>
|
|
*> The M-by-M factor Q_out is given as a product of NOCB
|
|
*> unitary M-by-M matrices Q_out(i).
|
|
*>
|
|
*> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
|
|
*>
|
|
*> where each matrix Q_out(i) is given by the WY-representation
|
|
*> using corresponding blocks from the matrices V and T:
|
|
*>
|
|
*> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
|
|
*>
|
|
*> where I is the identity matrix. Here is the formula with matrix
|
|
*> dimensions:
|
|
*>
|
|
*> Q(i){M-by-M} = I{M-by-M} -
|
|
*> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
|
|
*>
|
|
*> where INB = NB, except for the last block NOCB
|
|
*> for which INB=LAST_NB.
|
|
*>
|
|
*> =====
|
|
*> NOTE:
|
|
*> =====
|
|
*>
|
|
*> If Q_in is the result of doing a QR factorization
|
|
*> B = Q_in * R_in, then:
|
|
*>
|
|
*> B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.
|
|
*>
|
|
*> So if one wants to interpret Q_out as the result
|
|
*> of the QR factorization of B, then the corresponding R_out
|
|
*> should be equal to R_out = S * R_in, i.e. some rows of R_in
|
|
*> should be multiplied by -1.
|
|
*>
|
|
*> For the details of the algorithm, see [1].
|
|
*>
|
|
*> [1] "Reconstructing Householder vectors from tall-skinny QR",
|
|
*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
|
|
*> E. Solomonik, J. Parallel Distrib. Comput.,
|
|
*> vol. 85, pp. 3-31, 2015.
|
|
*> \endverbatim
|
|
*>
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> November 2019, Igor Kozachenko,
|
|
*> Computer Science Division,
|
|
*> University of California, Berkeley
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
|
|
IMPLICIT NONE
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LDT, M, N, NB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), D( * ), T( LDT, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 CONE, CZERO
|
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
|
|
$ CZERO = ( 0.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
|
|
$ NPLUSONE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZCOPY, ZLAUNHR_COL_GETRFNP, ZSCAL, ZTRSM,
|
|
$ XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
|
|
INFO = -2
|
|
ELSE IF( NB.LT.1 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
|
|
INFO = -7
|
|
END IF
|
|
*
|
|
* Handle error in the input parameters.
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZUNHR_COL', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( MIN( M, N ).EQ.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* On input, the M-by-N matrix A contains the unitary
|
|
* M-by-N matrix Q_in.
|
|
*
|
|
* (1) Compute the unit lower-trapezoidal V (ones on the diagonal
|
|
* are not stored) by performing the "modified" LU-decomposition.
|
|
*
|
|
* Q_in - ( S ) = V * U = ( V1 ) * U,
|
|
* ( 0 ) ( V2 )
|
|
*
|
|
* where 0 is an (M-N)-by-N zero matrix.
|
|
*
|
|
* (1-1) Factor V1 and U.
|
|
|
|
CALL ZLAUNHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
|
|
*
|
|
* (1-2) Solve for V2.
|
|
*
|
|
IF( M.GT.N ) THEN
|
|
CALL ZTRSM( 'R', 'U', 'N', 'N', M-N, N, CONE, A, LDA,
|
|
$ A( N+1, 1 ), LDA )
|
|
END IF
|
|
*
|
|
* (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
|
|
* as a sequence of upper-triangular blocks with NB-size column
|
|
* blocking.
|
|
*
|
|
* Loop over the column blocks of size NB of the array A(1:M,1:N)
|
|
* and the array T(1:NB,1:N), JB is the column index of a column
|
|
* block, JNB is the column block size at each step JB.
|
|
*
|
|
NPLUSONE = N + 1
|
|
DO JB = 1, N, NB
|
|
*
|
|
* (2-0) Determine the column block size JNB.
|
|
*
|
|
JNB = MIN( NPLUSONE-JB, NB )
|
|
*
|
|
* (2-1) Copy the upper-triangular part of the current JNB-by-JNB
|
|
* diagonal block U(JB) (of the N-by-N matrix U) stored
|
|
* in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
|
|
* of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
|
|
* column-by-column, total JNB*(JNB+1)/2 elements.
|
|
*
|
|
JBTEMP1 = JB - 1
|
|
DO J = JB, JB+JNB-1
|
|
CALL ZCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
|
|
END DO
|
|
*
|
|
* (2-2) Perform on the upper-triangular part of the current
|
|
* JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
|
|
* in T(1:JNB,JB:JB+JNB-1) the following operation in place:
|
|
* (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
|
|
* triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
|
|
* of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
|
|
* diagonal block S(JB) of the N-by-N sign matrix S from the
|
|
* right means changing the sign of each J-th column of the block
|
|
* U(JB) according to the sign of the diagonal element of the block
|
|
* S(JB), i.e. S(J,J) that is stored in the array element D(J).
|
|
*
|
|
DO J = JB, JB+JNB-1
|
|
IF( D( J ).EQ.CONE ) THEN
|
|
CALL ZSCAL( J-JBTEMP1, -CONE, T( 1, J ), 1 )
|
|
END IF
|
|
END DO
|
|
*
|
|
* (2-3) Perform the triangular solve for the current block
|
|
* matrix X(JB):
|
|
*
|
|
* X(JB) * (A(JB)**T) = B(JB), where:
|
|
*
|
|
* A(JB)**T is a JNB-by-JNB unit upper-triangular
|
|
* coefficient block, and A(JB)=V1(JB), which
|
|
* is a JNB-by-JNB unit lower-triangular block
|
|
* stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
|
|
* The N-by-N matrix V1 is the upper part
|
|
* of the M-by-N lower-trapezoidal matrix V
|
|
* stored in A(1:M,1:N);
|
|
*
|
|
* B(JB) is a JNB-by-JNB upper-triangular right-hand
|
|
* side block, B(JB) = (-1)*U(JB)*S(JB), and
|
|
* B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
|
|
*
|
|
* X(JB) is a JNB-by-JNB upper-triangular solution
|
|
* block, X(JB) is the upper-triangular block
|
|
* reflector T(JB), and X(JB) is stored
|
|
* in T(1:JNB,JB:JB+JNB-1).
|
|
*
|
|
* In other words, we perform the triangular solve for the
|
|
* upper-triangular block T(JB):
|
|
*
|
|
* T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
|
|
*
|
|
* Even though the blocks X(JB) and B(JB) are upper-
|
|
* triangular, the routine ZTRSM will access all JNB**2
|
|
* elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
|
|
* we need to set to zero the elements of the block
|
|
* T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
|
|
* to ZTRSM.
|
|
*
|
|
* (2-3a) Set the elements to zero.
|
|
*
|
|
JBTEMP2 = JB - 2
|
|
DO J = JB, JB+JNB-2
|
|
DO I = J-JBTEMP2, NB
|
|
T( I, J ) = CZERO
|
|
END DO
|
|
END DO
|
|
*
|
|
* (2-3b) Perform the triangular solve.
|
|
*
|
|
CALL ZTRSM( 'R', 'L', 'C', 'U', JNB, JNB, CONE,
|
|
$ A( JB, JB ), LDA, T( 1, JB ), LDT )
|
|
*
|
|
END DO
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZUNHR_COL
|
|
*
|
|
END
|
|
|