You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
721 lines
23 KiB
721 lines
23 KiB
*> \brief \b CCHKBB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
|
|
* NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
|
|
* BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
|
|
* LWORK, RWORK, RESULT, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
|
|
* $ NRHS, NSIZES, NTYPES, NWDTHS
|
|
* REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL DOTYPE( * )
|
|
* INTEGER ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
|
|
* REAL BD( * ), BE( * ), RESULT( * ), RWORK( * )
|
|
* COMPLEX A( LDA, * ), AB( LDAB, * ), C( LDC, * ),
|
|
* $ CC( LDC, * ), P( LDP, * ), Q( LDQ, * ),
|
|
* $ WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CCHKBB tests the reduction of a general complex rectangular band
|
|
*> matrix to real bidiagonal form.
|
|
*>
|
|
*> CGBBRD factors a general band matrix A as Q B P* , where * means
|
|
*> conjugate transpose, B is upper bidiagonal, and Q and P are unitary;
|
|
*> CGBBRD can also overwrite a given matrix C with Q* C .
|
|
*>
|
|
*> For each pair of matrix dimensions (M,N) and each selected matrix
|
|
*> type, an M by N matrix A and an M by NRHS matrix C are generated.
|
|
*> The problem dimensions are as follows
|
|
*> A: M x N
|
|
*> Q: M x M
|
|
*> P: N x N
|
|
*> B: min(M,N) x min(M,N)
|
|
*> C: M x NRHS
|
|
*>
|
|
*> For each generated matrix, 4 tests are performed:
|
|
*>
|
|
*> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
|
|
*>
|
|
*> (2) | I - Q' Q | / ( M ulp )
|
|
*>
|
|
*> (3) | I - PT PT' | / ( N ulp )
|
|
*>
|
|
*> (4) | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C.
|
|
*>
|
|
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
|
|
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
|
|
*> Currently, the list of possible types is:
|
|
*>
|
|
*> The possible matrix types are
|
|
*>
|
|
*> (1) The zero matrix.
|
|
*> (2) The identity matrix.
|
|
*>
|
|
*> (3) A diagonal matrix with evenly spaced entries
|
|
*> 1, ..., ULP and random signs.
|
|
*> (ULP = (first number larger than 1) - 1 )
|
|
*> (4) A diagonal matrix with geometrically spaced entries
|
|
*> 1, ..., ULP and random signs.
|
|
*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
|
|
*> and random signs.
|
|
*>
|
|
*> (6) Same as (3), but multiplied by SQRT( overflow threshold )
|
|
*> (7) Same as (3), but multiplied by SQRT( underflow threshold )
|
|
*>
|
|
*> (8) A matrix of the form U D V, where U and V are orthogonal and
|
|
*> D has evenly spaced entries 1, ..., ULP with random signs
|
|
*> on the diagonal.
|
|
*>
|
|
*> (9) A matrix of the form U D V, where U and V are orthogonal and
|
|
*> D has geometrically spaced entries 1, ..., ULP with random
|
|
*> signs on the diagonal.
|
|
*>
|
|
*> (10) A matrix of the form U D V, where U and V are orthogonal and
|
|
*> D has "clustered" entries 1, ULP,..., ULP with random
|
|
*> signs on the diagonal.
|
|
*>
|
|
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
|
|
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
|
|
*>
|
|
*> (13) Rectangular matrix with random entries chosen from (-1,1).
|
|
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
|
|
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] NSIZES
|
|
*> \verbatim
|
|
*> NSIZES is INTEGER
|
|
*> The number of values of M and N contained in the vectors
|
|
*> MVAL and NVAL. The matrix sizes are used in pairs (M,N).
|
|
*> If NSIZES is zero, CCHKBB does nothing. NSIZES must be at
|
|
*> least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MVAL
|
|
*> \verbatim
|
|
*> MVAL is INTEGER array, dimension (NSIZES)
|
|
*> The values of the matrix row dimension M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NVAL
|
|
*> \verbatim
|
|
*> NVAL is INTEGER array, dimension (NSIZES)
|
|
*> The values of the matrix column dimension N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NWDTHS
|
|
*> \verbatim
|
|
*> NWDTHS is INTEGER
|
|
*> The number of bandwidths to use. If it is zero,
|
|
*> CCHKBB does nothing. It must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KK
|
|
*> \verbatim
|
|
*> KK is INTEGER array, dimension (NWDTHS)
|
|
*> An array containing the bandwidths to be used for the band
|
|
*> matrices. The values must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NTYPES
|
|
*> \verbatim
|
|
*> NTYPES is INTEGER
|
|
*> The number of elements in DOTYPE. If it is zero, CCHKBB
|
|
*> does nothing. It must be at least zero. If it is MAXTYP+1
|
|
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
|
|
*> defined, which is to use whatever matrix is in A. This
|
|
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
|
|
*> DOTYPE(MAXTYP+1) is .TRUE. .
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DOTYPE
|
|
*> \verbatim
|
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
|
*> If DOTYPE(j) is .TRUE., then for each size in NN a
|
|
*> matrix of that size and of type j will be generated.
|
|
*> If NTYPES is smaller than the maximum number of types
|
|
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
|
|
*> MAXTYP will not be generated. If NTYPES is larger
|
|
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
|
|
*> will be ignored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of columns in the "right-hand side" matrix C.
|
|
*> If NRHS = 0, then the operations on the right-hand side will
|
|
*> not be tested. NRHS must be at least 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ISEED
|
|
*> \verbatim
|
|
*> ISEED is INTEGER array, dimension (4)
|
|
*> On entry ISEED specifies the seed of the random number
|
|
*> generator. The array elements should be between 0 and 4095;
|
|
*> if not they will be reduced mod 4096. Also, ISEED(4) must
|
|
*> be odd. The random number generator uses a linear
|
|
*> congruential sequence limited to small integers, and so
|
|
*> should produce machine independent random numbers. The
|
|
*> values of ISEED are changed on exit, and can be used in the
|
|
*> next call to CCHKBB to continue the same random number
|
|
*> sequence.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is REAL
|
|
*> A test will count as "failed" if the "error", computed as
|
|
*> described above, exceeds THRESH. Note that the error
|
|
*> is scaled to be O(1), so THRESH should be a reasonably
|
|
*> small multiple of 1, e.g., 10 or 100. In particular,
|
|
*> it should not depend on the precision (single vs. double)
|
|
*> or the size of the matrix. It must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUNIT
|
|
*> \verbatim
|
|
*> NOUNIT is INTEGER
|
|
*> The FORTRAN unit number for printing out error messages
|
|
*> (e.g., if a routine returns IINFO not equal to 0.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension
|
|
*> (LDA, max(NN))
|
|
*> Used to hold the matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of A. It must be at least 1
|
|
*> and at least max( NN ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AB
|
|
*> \verbatim
|
|
*> AB is REAL array, dimension (LDAB, max(NN))
|
|
*> Used to hold A in band storage format.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of AB. It must be at least 2 (not 1!)
|
|
*> and at least max( KK )+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BD
|
|
*> \verbatim
|
|
*> BD is REAL array, dimension (max(NN))
|
|
*> Used to hold the diagonal of the bidiagonal matrix computed
|
|
*> by CGBBRD.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BE
|
|
*> \verbatim
|
|
*> BE is REAL array, dimension (max(NN))
|
|
*> Used to hold the off-diagonal of the bidiagonal matrix
|
|
*> computed by CGBBRD.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ, max(NN))
|
|
*> Used to hold the unitary matrix Q computed by CGBBRD.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of Q. It must be at least 1
|
|
*> and at least max( NN ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] P
|
|
*> \verbatim
|
|
*> P is COMPLEX array, dimension (LDP, max(NN))
|
|
*> Used to hold the unitary matrix P computed by CGBBRD.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDP
|
|
*> \verbatim
|
|
*> LDP is INTEGER
|
|
*> The leading dimension of P. It must be at least 1
|
|
*> and at least max( NN ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] C
|
|
*> \verbatim
|
|
*> C is COMPLEX array, dimension (LDC, max(NN))
|
|
*> Used to hold the matrix C updated by CGBBRD.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of U. It must be at least 1
|
|
*> and at least max( NN ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] CC
|
|
*> \verbatim
|
|
*> CC is COMPLEX array, dimension (LDC, max(NN))
|
|
*> Used to hold a copy of the matrix C.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The number of entries in WORK. This must be at least
|
|
*> max( LDA+1, max(NN)+1 )*max(NN).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (max(NN))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is REAL array, dimension (4)
|
|
*> The values computed by the tests described above.
|
|
*> The values are currently limited to 1/ulp, to avoid
|
|
*> overflow.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> If 0, then everything ran OK.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> Some Local Variables and Parameters:
|
|
*> ---- ----- --------- --- ----------
|
|
*> ZERO, ONE Real 0 and 1.
|
|
*> MAXTYP The number of types defined.
|
|
*> NTEST The number of tests performed, or which can
|
|
*> be performed so far, for the current matrix.
|
|
*> NTESTT The total number of tests performed so far.
|
|
*> NMAX Largest value in NN.
|
|
*> NMATS The number of matrices generated so far.
|
|
*> NERRS The number of tests which have exceeded THRESH
|
|
*> so far.
|
|
*> COND, IMODE Values to be passed to the matrix generators.
|
|
*> ANORM Norm of A; passed to matrix generators.
|
|
*>
|
|
*> OVFL, UNFL Overflow and underflow thresholds.
|
|
*> ULP, ULPINV Finest relative precision and its inverse.
|
|
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
|
|
*> The following four arrays decode JTYPE:
|
|
*> KTYPE(j) The general type (1-10) for type "j".
|
|
*> KMODE(j) The MODE value to be passed to the matrix
|
|
*> generator for type "j".
|
|
*> KMAGN(j) The order of magnitude ( O(1),
|
|
*> O(overflow^(1/2) ), O(underflow^(1/2) )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
|
|
$ NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
|
|
$ BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
|
|
$ LWORK, RWORK, RESULT, INFO )
|
|
*
|
|
* -- LAPACK test routine (input) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
|
|
$ NRHS, NSIZES, NTYPES, NWDTHS
|
|
REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL DOTYPE( * )
|
|
INTEGER ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
|
|
REAL BD( * ), BE( * ), RESULT( * ), RWORK( * )
|
|
COMPLEX A( LDA, * ), AB( LDAB, * ), C( LDC, * ),
|
|
$ CC( LDC, * ), P( LDP, * ), Q( LDQ, * ),
|
|
$ WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
|
|
$ CONE = ( 1.0E+0, 0.0E+0 ) )
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
INTEGER MAXTYP
|
|
PARAMETER ( MAXTYP = 15 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL BADMM, BADNN, BADNNB
|
|
INTEGER I, IINFO, IMODE, ITYPE, J, JCOL, JR, JSIZE,
|
|
$ JTYPE, JWIDTH, K, KL, KMAX, KU, M, MMAX, MNMAX,
|
|
$ MNMIN, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
|
|
$ NTESTT
|
|
REAL AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL, ULP,
|
|
$ ULPINV, UNFL
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
|
|
$ KMODE( MAXTYP ), KTYPE( MAXTYP )
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH
|
|
EXTERNAL SLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CBDT01, CBDT02, CGBBRD, CLACPY, CLASET, CLATMR,
|
|
$ CLATMS, CUNT01, SLAHD2, SLASUM, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, REAL, SQRT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA KTYPE / 1, 2, 5*4, 5*6, 3*9 /
|
|
DATA KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3 /
|
|
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
|
|
$ 0, 0 /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Check for errors
|
|
*
|
|
NTESTT = 0
|
|
INFO = 0
|
|
*
|
|
* Important constants
|
|
*
|
|
BADMM = .FALSE.
|
|
BADNN = .FALSE.
|
|
MMAX = 1
|
|
NMAX = 1
|
|
MNMAX = 1
|
|
DO 10 J = 1, NSIZES
|
|
MMAX = MAX( MMAX, MVAL( J ) )
|
|
IF( MVAL( J ).LT.0 )
|
|
$ BADMM = .TRUE.
|
|
NMAX = MAX( NMAX, NVAL( J ) )
|
|
IF( NVAL( J ).LT.0 )
|
|
$ BADNN = .TRUE.
|
|
MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
|
|
10 CONTINUE
|
|
*
|
|
BADNNB = .FALSE.
|
|
KMAX = 0
|
|
DO 20 J = 1, NWDTHS
|
|
KMAX = MAX( KMAX, KK( J ) )
|
|
IF( KK( J ).LT.0 )
|
|
$ BADNNB = .TRUE.
|
|
20 CONTINUE
|
|
*
|
|
* Check for errors
|
|
*
|
|
IF( NSIZES.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( BADMM ) THEN
|
|
INFO = -2
|
|
ELSE IF( BADNN ) THEN
|
|
INFO = -3
|
|
ELSE IF( NWDTHS.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( BADNNB ) THEN
|
|
INFO = -5
|
|
ELSE IF( NTYPES.LT.0 ) THEN
|
|
INFO = -6
|
|
ELSE IF( NRHS.LT.0 ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDA.LT.NMAX ) THEN
|
|
INFO = -13
|
|
ELSE IF( LDAB.LT.2*KMAX+1 ) THEN
|
|
INFO = -15
|
|
ELSE IF( LDQ.LT.NMAX ) THEN
|
|
INFO = -19
|
|
ELSE IF( LDP.LT.NMAX ) THEN
|
|
INFO = -21
|
|
ELSE IF( LDC.LT.NMAX ) THEN
|
|
INFO = -23
|
|
ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
|
|
INFO = -26
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CCHKBB', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* More Important constants
|
|
*
|
|
UNFL = SLAMCH( 'Safe minimum' )
|
|
OVFL = ONE / UNFL
|
|
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
|
|
ULPINV = ONE / ULP
|
|
RTUNFL = SQRT( UNFL )
|
|
RTOVFL = SQRT( OVFL )
|
|
*
|
|
* Loop over sizes, widths, types
|
|
*
|
|
NERRS = 0
|
|
NMATS = 0
|
|
*
|
|
DO 160 JSIZE = 1, NSIZES
|
|
M = MVAL( JSIZE )
|
|
N = NVAL( JSIZE )
|
|
MNMIN = MIN( M, N )
|
|
AMNINV = ONE / REAL( MAX( 1, M, N ) )
|
|
*
|
|
DO 150 JWIDTH = 1, NWDTHS
|
|
K = KK( JWIDTH )
|
|
IF( K.GE.M .AND. K.GE.N )
|
|
$ GO TO 150
|
|
KL = MAX( 0, MIN( M-1, K ) )
|
|
KU = MAX( 0, MIN( N-1, K ) )
|
|
*
|
|
IF( NSIZES.NE.1 ) THEN
|
|
MTYPES = MIN( MAXTYP, NTYPES )
|
|
ELSE
|
|
MTYPES = MIN( MAXTYP+1, NTYPES )
|
|
END IF
|
|
*
|
|
DO 140 JTYPE = 1, MTYPES
|
|
IF( .NOT.DOTYPE( JTYPE ) )
|
|
$ GO TO 140
|
|
NMATS = NMATS + 1
|
|
NTEST = 0
|
|
*
|
|
DO 30 J = 1, 4
|
|
IOLDSD( J ) = ISEED( J )
|
|
30 CONTINUE
|
|
*
|
|
* Compute "A".
|
|
*
|
|
* Control parameters:
|
|
*
|
|
* KMAGN KMODE KTYPE
|
|
* =1 O(1) clustered 1 zero
|
|
* =2 large clustered 2 identity
|
|
* =3 small exponential (none)
|
|
* =4 arithmetic diagonal, (w/ singular values)
|
|
* =5 random log (none)
|
|
* =6 random nonhermitian, w/ singular values
|
|
* =7 (none)
|
|
* =8 (none)
|
|
* =9 random nonhermitian
|
|
*
|
|
IF( MTYPES.GT.MAXTYP )
|
|
$ GO TO 90
|
|
*
|
|
ITYPE = KTYPE( JTYPE )
|
|
IMODE = KMODE( JTYPE )
|
|
*
|
|
* Compute norm
|
|
*
|
|
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
|
|
*
|
|
40 CONTINUE
|
|
ANORM = ONE
|
|
GO TO 70
|
|
*
|
|
50 CONTINUE
|
|
ANORM = ( RTOVFL*ULP )*AMNINV
|
|
GO TO 70
|
|
*
|
|
60 CONTINUE
|
|
ANORM = RTUNFL*MAX( M, N )*ULPINV
|
|
GO TO 70
|
|
*
|
|
70 CONTINUE
|
|
*
|
|
CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
|
|
CALL CLASET( 'Full', LDAB, N, CZERO, CZERO, AB, LDAB )
|
|
IINFO = 0
|
|
COND = ULPINV
|
|
*
|
|
* Special Matrices -- Identity & Jordan block
|
|
*
|
|
* Zero
|
|
*
|
|
IF( ITYPE.EQ.1 ) THEN
|
|
IINFO = 0
|
|
*
|
|
ELSE IF( ITYPE.EQ.2 ) THEN
|
|
*
|
|
* Identity
|
|
*
|
|
DO 80 JCOL = 1, N
|
|
A( JCOL, JCOL ) = ANORM
|
|
80 CONTINUE
|
|
*
|
|
ELSE IF( ITYPE.EQ.4 ) THEN
|
|
*
|
|
* Diagonal Matrix, singular values specified
|
|
*
|
|
CALL CLATMS( M, N, 'S', ISEED, 'N', RWORK, IMODE,
|
|
$ COND, ANORM, 0, 0, 'N', A, LDA, WORK,
|
|
$ IINFO )
|
|
*
|
|
ELSE IF( ITYPE.EQ.6 ) THEN
|
|
*
|
|
* Nonhermitian, singular values specified
|
|
*
|
|
CALL CLATMS( M, N, 'S', ISEED, 'N', RWORK, IMODE,
|
|
$ COND, ANORM, KL, KU, 'N', A, LDA, WORK,
|
|
$ IINFO )
|
|
*
|
|
ELSE IF( ITYPE.EQ.9 ) THEN
|
|
*
|
|
* Nonhermitian, random entries
|
|
*
|
|
CALL CLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE,
|
|
$ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
|
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, KL,
|
|
$ KU, ZERO, ANORM, 'N', A, LDA, IDUMMA,
|
|
$ IINFO )
|
|
*
|
|
ELSE
|
|
*
|
|
IINFO = 1
|
|
END IF
|
|
*
|
|
* Generate Right-Hand Side
|
|
*
|
|
CALL CLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE,
|
|
$ CONE, 'T', 'N', WORK( M+1 ), 1, ONE,
|
|
$ WORK( 2*M+1 ), 1, ONE, 'N', IDUMMA, M, NRHS,
|
|
$ ZERO, ONE, 'NO', C, LDC, IDUMMA, IINFO )
|
|
*
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
|
|
$ JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
90 CONTINUE
|
|
*
|
|
* Copy A to band storage.
|
|
*
|
|
DO 110 J = 1, N
|
|
DO 100 I = MAX( 1, J-KU ), MIN( M, J+KL )
|
|
AB( KU+1+I-J, J ) = A( I, J )
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
*
|
|
* Copy C
|
|
*
|
|
CALL CLACPY( 'Full', M, NRHS, C, LDC, CC, LDC )
|
|
*
|
|
* Call CGBBRD to compute B, Q and P, and to update C.
|
|
*
|
|
CALL CGBBRD( 'B', M, N, NRHS, KL, KU, AB, LDAB, BD, BE,
|
|
$ Q, LDQ, P, LDP, CC, LDC, WORK, RWORK,
|
|
$ IINFO )
|
|
*
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CGBBRD', IINFO, N, JTYPE,
|
|
$ IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( 1 ) = ULPINV
|
|
GO TO 120
|
|
END IF
|
|
END IF
|
|
*
|
|
* Test 1: Check the decomposition A := Q * B * P'
|
|
* 2: Check the orthogonality of Q
|
|
* 3: Check the orthogonality of P
|
|
* 4: Check the computation of Q' * C
|
|
*
|
|
CALL CBDT01( M, N, -1, A, LDA, Q, LDQ, BD, BE, P, LDP,
|
|
$ WORK, RWORK, RESULT( 1 ) )
|
|
CALL CUNT01( 'Columns', M, M, Q, LDQ, WORK, LWORK, RWORK,
|
|
$ RESULT( 2 ) )
|
|
CALL CUNT01( 'Rows', N, N, P, LDP, WORK, LWORK, RWORK,
|
|
$ RESULT( 3 ) )
|
|
CALL CBDT02( M, NRHS, C, LDC, CC, LDC, Q, LDQ, WORK,
|
|
$ RWORK, RESULT( 4 ) )
|
|
*
|
|
* End of Loop -- Check for RESULT(j) > THRESH
|
|
*
|
|
NTEST = 4
|
|
120 CONTINUE
|
|
NTESTT = NTESTT + NTEST
|
|
*
|
|
* Print out tests which fail.
|
|
*
|
|
DO 130 JR = 1, NTEST
|
|
IF( RESULT( JR ).GE.THRESH ) THEN
|
|
IF( NERRS.EQ.0 )
|
|
$ CALL SLAHD2( NOUNIT, 'CBB' )
|
|
NERRS = NERRS + 1
|
|
WRITE( NOUNIT, FMT = 9998 )M, N, K, IOLDSD, JTYPE,
|
|
$ JR, RESULT( JR )
|
|
END IF
|
|
130 CONTINUE
|
|
*
|
|
140 CONTINUE
|
|
150 CONTINUE
|
|
160 CONTINUE
|
|
*
|
|
* Summary
|
|
*
|
|
CALL SLASUM( 'CBB', NOUNIT, NERRS, NTESTT )
|
|
RETURN
|
|
*
|
|
9999 FORMAT( ' CCHKBB: ', A, ' returned INFO=', I5, '.', / 9X, 'M=',
|
|
$ I5, ' N=', I5, ' K=', I5, ', JTYPE=', I5, ', ISEED=(',
|
|
$ 3( I5, ',' ), I5, ')' )
|
|
9998 FORMAT( ' M =', I4, ' N=', I4, ', K=', I3, ', seed=',
|
|
$ 4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
|
|
*
|
|
* End of CCHKBB
|
|
*
|
|
END
|
|
|