Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

233 lines
6.0 KiB

*> \brief \b CGLMTS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
* X, U, WORK, LWORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LWORK, M, P, N
* REAL RESULT
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX A( LDA, * ), AF( LDA, * ), B( LDB, * ),
* $ BF( LDB, * ), D( * ), DF( * ), U( * ),
* $ WORK( LWORK ), X( * )
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGLMTS tests CGGGLM - a subroutine for solving the generalized
*> linear model problem.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of columns of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of columns of the matrix B. P >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,M)
*> The N-by-M matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is COMPLEX array, dimension (LDA,M)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF. LDA >= max(M,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,P)
*> The N-by-P matrix A.
*> \endverbatim
*>
*> \param[out] BF
*> \verbatim
*> BF is COMPLEX array, dimension (LDB,P)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the arrays B, BF. LDB >= max(P,N).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX array, dimension( N )
*> On input, the left hand side of the GLM.
*> \endverbatim
*>
*> \param[out] DF
*> \verbatim
*> DF is COMPLEX array, dimension( N )
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension( M )
*> solution vector X in the GLM problem.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is COMPLEX array, dimension( P )
*> solution vector U in the GLM problem.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL
*> The test ratio:
*> norm( d - A*x - B*u )
*> RESULT = -----------------------------------------
*> (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
$ X, U, WORK, LWORK, RWORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, P, N
REAL RESULT
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), AF( LDA, * ), B( LDB, * ),
$ BF( LDB, * ), D( * ), DF( * ), U( * ),
$ WORK( LWORK ), X( * )
*
* ====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
COMPLEX CONE
PARAMETER ( CONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER INFO
REAL ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL
* ..
* .. External Functions ..
REAL SCASUM, SLAMCH, CLANGE
EXTERNAL SCASUM, SLAMCH, CLANGE
* ..
* .. External Subroutines ..
EXTERNAL CLACPY
*
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
EPS = SLAMCH( 'Epsilon' )
UNFL = SLAMCH( 'Safe minimum' )
ANORM = MAX( CLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
BNORM = MAX( CLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
* Copy the matrices A and B to the arrays AF and BF,
* and the vector D the array DF.
*
CALL CLACPY( 'Full', N, M, A, LDA, AF, LDA )
CALL CLACPY( 'Full', N, P, B, LDB, BF, LDB )
CALL CCOPY( N, D, 1, DF, 1 )
*
* Solve GLM problem
*
CALL CGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
$ INFO )
*
* Test the residual for the solution of LSE
*
* norm( d - A*x - B*u )
* RESULT = -----------------------------------------
* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
CALL CCOPY( N, D, 1, DF, 1 )
CALL CGEMV( 'No transpose', N, M, -CONE, A, LDA, X, 1, CONE,
$ DF, 1 )
*
CALL CGEMV( 'No transpose', N, P, -CONE, B, LDB, U, 1, CONE,
$ DF, 1 )
*
DNORM = SCASUM( N, DF, 1 )
XNORM = SCASUM( M, X, 1 ) + SCASUM( P, U, 1 )
YNORM = ANORM + BNORM
*
IF( XNORM.LE.ZERO ) THEN
RESULT = ZERO
ELSE
RESULT = ( ( DNORM / YNORM ) / XNORM ) /EPS
END IF
*
RETURN
*
* End of CGLMTS
*
END